首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >COMPUTATIONAL METHOD FOR PROTEIN FUNCTION PREDICTION BY CONSTRUCTING PROTEIN INTERACTION NETWORK DICTIONARY
【24h】

COMPUTATIONAL METHOD FOR PROTEIN FUNCTION PREDICTION BY CONSTRUCTING PROTEIN INTERACTION NETWORK DICTIONARY

机译:构建蛋白质相互作用网络词典的蛋白质功能预测计算方法

获取原文
获取原文并翻译 | 示例

摘要

In the post-genomic era, predicting protein function is a challenging problem. It is difficult and burdensome work to unravel the functions of a protein by wet experiments only. In this paper, we propose a novel method to predict protein functions by building a "Protein Interaction Network Dictionary (PIND)". This method deduces the protein functions by searching the most similar "words" (an anagram of functions in neighbor proteins on a protein—protein interaction graph) using global alignments. An evaluation of sensitivity and specificity shows that this PIND approach outperforms previous approaches such as Majority Rule and Chi-Square measure, and that it competes with the recently introduced, Random Markov Model approach.
机译:在后基因组时代,预测蛋白质功能是一个具有挑战性的问题。仅通过湿实验来解开蛋白质的功能是困难且繁重的工作。在本文中,我们提出了一种通过构建“蛋白质相互作用网络字典(PIND)”来预测蛋白质功能的新方法。该方法通过使用全局比对来搜索最相似的“单词”(蛋白质-蛋白质相互作用图上相邻蛋白质的功能词)来推导蛋白质功能。对敏感性和特异性的评估表明,该PIND方法优于以前的方法(如多数规则和卡方测量),并且可以与最近引入的随机马尔可夫模型方法竞争。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号