首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >CONTOUR-BASED FEATURE EXTRACTION USING DUAL-TREE COMPLEX WAVELETS
【24h】

CONTOUR-BASED FEATURE EXTRACTION USING DUAL-TREE COMPLEX WAVELETS

机译:利用二叉树复杂小波提取基于轮廓的特征

获取原文
获取原文并翻译 | 示例

摘要

A contour-based feature extraction method is proposed by using the dual-tree complex wavelet transform and the Fourier transform. Features are extracted from the 1D signals γ and θ, and hence the processing memory and time are reduced. The approximate shift-invariant property of the dual-tree complex wavelet transform and the Fourier transform guarantee that this method is invariant to translation, rotation and scaling. The method is used to recognize aircrafts from different rotation angles and scaling factors. Experimental results show that it achieves better recognition rates than that which uses only the Fourier features and Granlund's method. Its success is due to the desirable shift invariant property of the dual-tree complex wavelet transform, the translation invariant property of the Fourier spectrum, and our new complete representation of the outer contour of the pattern.
机译:提出了一种利用双树复小波变换和傅立叶变换的轮廓特征提取方法。从一维信号γ和θ中提取特征,因此减少了处理内存和时间。双树复数小波变换和傅立叶变换的近似平移不变性保证了该方法对于平移,旋转和缩放不变。该方法用于从不同的旋转角度和比例因子识别飞机。实验结果表明,与仅使用傅立叶特征和Granlund方法相比,该方法具有更高的识别率。它的成功归因于对偶树复数小波变换的理想移位不变性,傅立叶谱的平移不变性以及我们对图形外轮廓的新完整表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号