首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >PERFORMANCE ANALYSIS OF FACE RECOGNITION ALGORITHMS ON KOREAN FACE DATABASE
【24h】

PERFORMANCE ANALYSIS OF FACE RECOGNITION ALGORITHMS ON KOREAN FACE DATABASE

机译:韩国人脸数据库中人脸识别算法的性能分析

获取原文
获取原文并翻译 | 示例

摘要

Human face is one of the most common and useful keys to a person's identity. Although, a number of face recognition algorithms have been proposed, many researchers believe that the technology should be improved further in order to overcome the instability caused by variable illuminations, expressions, poses and accessories. To analyze these face recognition algorithm, it is indispensable to collect various data as much as possible. Face databases such as CMU PIE (USA), FERET (USA), AR Face DB (USA) and XM2VTS (UK) are the representative ones commonly used. However, many databases do not provide adequately annotated information of the pose angle, illumination angle, illumination color and ground-truth. Mostly, they do not include large enough number of images and video data taken under various environments. Furthermore, the faces on these databases have different characteristics from those of Asian. Thus, we have designed and constructed a Korean Face Database (KFDB) which includes not only images but also video clips, ground-truth information of facial feature points and descriptions of subjects and environment conditions so that it can be used for general purposes. In this paper, we present the KFDB which contains image and video data for 1920 subjects and has been constructed in 3 years (sessions). We also present recognition results by CM (Correlation Matching) and PCA (Principal Component Analysis) which are used as baseline algorithms upon CMU PIE and KFDB, so as to understand how recognition rate is changed by altering image taking conditions.
机译:人脸是一个人的身份最常见和最有用的钥匙之一。尽管已经提出了许多人脸识别算法,但许多研究人员认为,应进一步改进该技术,以克服由可变照明,表情,姿势和配件引起的不稳定性。为了分析这些面部识别算法,必不可少的是收集各种数据。常用的代表数据库包括CMU PIE(美国),FERET(美国),AR Face DB(美国)和XM2VTS(英国)。但是,许多数据库没有提供有关姿态角,照明角度,照明颜色和地面真实性的适当注释信息。通常,它们不包括在各种环境下拍摄的足够大量的图像和视频数据。此外,这些数据库中的面孔具有与亚洲人不同的特征。因此,我们设计并构建了一个韩国人脸数据库(KFDB),该数据库不仅包含图像,还包括视频剪辑,面部特征点的地面信息以及被摄对象和环境条件的描述,因此可以用于一般用途。在本文中,我们介绍了KFDB,其中包含1920个主题的图像和视频数据,并已在3年(课程)中构建。我们还介绍了CM(相关匹配)和​​PCA(主成分分析)的识别结果,这些结果被用作CMU PIE和KFDB的基线算法,从而了解如何通过改变拍摄条件来改变识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号