首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A NOVEL METHOD FOR PARTITIONING FEATURE SPACES ACCORDING TO THEIR INHERENT CLASSIFICATION COMPLEXITY
【24h】

A NOVEL METHOD FOR PARTITIONING FEATURE SPACES ACCORDING TO THEIR INHERENT CLASSIFICATION COMPLEXITY

机译:根据其固有的分类复杂度对特征空间进行分区的新方法

获取原文
获取原文并翻译 | 示例

摘要

The evaluation of the intrinsic complexity of a supervised domain plays an important role in devising classification systems. Typically, the metrics used for this purpose produce an overall evaluation of the domain, without localizing the sources of complexity. In this work we propose a method for partitioning the feature space into subsets of different complexity. The most important outcome of the method is the possibility of preliminarily identifying hard and easy regions of the feature space. This possibility opens interesting theoretical and pragmatic scenarios, including the analysis of the classification error and the implementation of robust classification systems. A first group of experiments has been performed on synthetic datasets, devised to separately highlight specific and recurrent problems often found in real-world domains. In particular, the focus has been on class boundaries, noise, and density of samples. A second group of experiments, performed on selected real-world datasets, confirm the validity of the proposed method. The ultimate goal of our research is to devise a method for estimating the classification difficulty of a dataset. The proposed method makes a significant step in this direction, as it is able to partition a given dataset according to the inherent complexity of the samples contained therein.
机译:对受监管域的内在复杂性的评估在设计分类系统中起着重要作用。通常,用于此目的的度量会生成域的整体评估,而不会定位复杂性的来源。在这项工作中,我们提出了一种将特征空间划分为不同复杂度的子集的方法。该方法最重要的结果是可以初步确定特征空间的硬区域和易区域。这种可能性打开了有趣的理论和实用场景,包括对分类错误的分析和强大分类系统的实施。已对合成数据集进行了第一组实验,旨在分别突出显示在现实世界域中经常发现的特定和经常性问题。特别是,重点一直放在类的边界,噪声和样本密度上。在选定的真实世界数据集上进行的第二组实验证实了该方法的有效性。我们研究的最终目的是设计一种估计数据集分类难度的方法。所提出的方法朝着这个方向迈出了重要的一步,因为它能够根据其中包含的样本的固有复杂性来划分给定的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号