首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Hybrid Histogram of Oriented Optical Flow for Abnormal Behavior Detection in Crowd Scenes
【24h】

Hybrid Histogram of Oriented Optical Flow for Abnormal Behavior Detection in Crowd Scenes

机译:定向光流的混合直方图用于人群场景异常行为检测

获取原文
获取原文并翻译 | 示例

摘要

Abnormal behavior detection in crowd scenes has received considerable attention in the field of public safety. Traditional motion models do not account for the continuity of motion characteristics between frames. In this paper, we present a new feature descriptor, called the hybrid optical flow histogram. By importing the concept of acceleration, our method can indicate the change of speed in different directions of a movement. Therefore, our descriptor contains more information on the movement. We also introduce a spatial and temporal region saliency determination method to extract the effective motion area only for samples, which could effectively reduce the computational costs, and we apply a sparse representation to detect abnormal behaviors via sparse reconstruction costs. Sparse representation has a high rate of recognition performance and stability. Experiments involving the UMN datasets and the videos taken by us show that our method can effectively identify various types of anomalies and that the recognition results are better than existing algorithms.
机译:在公共安全领域,人群场景中的异常行为检测已引起了广泛的关注。传统运动模型没有考虑帧之间运动特征的连续性。在本文中,我们提出了一个新的特征描述符,称为混合光流直方图。通过引入加速度的概念,我们的方法可以指示运动在不同方向上的速度变化。因此,我们的描述符包含有关运动的更多信息。我们还引入了一种时空区域显着性确定方法来仅提取样本的有效运动区域,这可以有效地减少计算成本,并且我们采用稀疏表示来通过稀疏重建成本来检测异常行为。稀疏表示具有较高的识别性能和稳定性。涉及UMN数据集和我们拍摄的视频的实验表明,我们的方法可以有效地识别各种类型的异常,并且识别结果优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号