首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Hyperspectral Data Feature Extraction Using Rational Function Curve Fitting
【24h】

Hyperspectral Data Feature Extraction Using Rational Function Curve Fitting

机译:使用有理函数曲线拟合的高光谱数据特征提取

获取原文
获取原文并翻译 | 示例

摘要

A feature reduction technique is proposed for the hyperspectral (HS) data classification problem. The new features have been developed through a curve fitting step which fits specific rational function approximations to every spectral response curve ( SRC) of HS image pixels. Then, the coefficients of the numerator and denominator polynomials of these fitted functions are considered as new extracted features. The method concentrates on the geometrical nature of SRCs and is utilizing the information that exists in sequence discipline - ordinance of reflectance coefficients in SRC - which has not been addressed by many other statistical analysis based methods. Maximum likelihood (ML) classification results show that the proposed method provides better classification accuracies compared to some basic and state-of-the-art feature extraction methods. Moreover, the proposed algorithm has the capability of being applied individually and simultaneously to all pixels of image.
机译:针对高光谱(HS)数据分类问题,提出了一种特征约简技术。这些新功能是通过曲线拟合步骤开发的,该步骤将特定的有理函数近似值拟合到HS图像像素的每个光谱响应曲线(SRC)。然后,将这些拟合函数的分子和分母多项式的系数视为新提取的特征。该方法着眼于SRC的几何性质,并利用了序列学科中存在的信息-SRC中的反射系数法则-尚未被许多其他基于统计分析的方法解决。最大似然(ML)分类结果表明,与某些基本的和最新的特征提取方法相比,该方法提供了更好的分类准确性。此外,所提出的算法具有被单独且同时应用于图像的所有像素的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号