首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Fast Circle Detection Using Spatial Decomposition of Hough Transform
【24h】

Fast Circle Detection Using Spatial Decomposition of Hough Transform

机译:基于霍夫变换空间分解的快速圆检测

获取原文
获取原文并翻译 | 示例

摘要

Circles are important patterns in many automatic image inspection applications. The Hough Transform (HT) is a popular method for extracting shapes from original images. It was first introduced for the recognition of straight lines, and later extended to circles. The drawbacks of standard Hough Transform (SHT) for circle detection are the large computational and storage requirements. In this paper, we propose a modified HT called Vector Quantization of Hough Transform (VQHT) to detect circles more efficiently. The basic idea is to first decompose the edge image into many subimages by using Vector Quantization (VQ) algorithm based on their natural spatial relationships. The edge points resided in each subimage are considered as one circle candidate group. Then the VQHT algorithm is applied for fast circle detection. A new paradigm to store potential curve parameters is also proposed, which can exponentially reduce the storage space for HT algorithm. Experimental results show that the proposed algorithm can quickly and accurately detect multiple circles from the noisy background.
机译:圆圈是许多自动图像检查应用程序中的重要模式。霍夫变换(HT)是一种从原始图像中提取形状的流行方法。最初是为识别直线引入的,后来扩展到圆形。用于圆周检测的标准霍夫变换(SHT)的缺点是计算和存储需求较大。在本文中,我们提出了一种改进的HT,称为霍夫变换矢量量化(VQHT),可以更有效地检测圆。基本思想是,首先根据矢量图像的自然空间关系,使用矢量量化(VQ)算法将其分解为许多子图像。驻留在每个子图像中的边缘点被视为一个圆形候选组。然后将VQHT算法应用于快速圆检测。还提出了一种存储潜在曲线参数的新范例,该范例可以成倍地减少HT算法的存储空间。实验结果表明,该算法可以快速,准确地从嘈杂的背景中检测出多个圆圈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号