首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Lip Segmentation Based on Combined Color Space and ACM with Rhombic Initial Contour
【24h】

Lip Segmentation Based on Combined Color Space and ACM with Rhombic Initial Contour

机译:基于颜色空间和ACM结合菱形初始轮廓的嘴唇分割

获取原文
获取原文并翻译 | 示例

摘要

Lip segmentation is one of critical steps in a lip-reading system, because it closely relates to the accuracy of system recognition. In this paper, we aim to improve the accuracy of lip segmentation. A novel color space is proposed which consists of the U component in the CIE-LUV space and the sum of C2 and C3 components of the image after discrete Hartley transform (DHT). We select a rhombus as the initial contour as its shape is approximate to a closed lip shape relatively. These notions are achieved based on the method of the Active contour model. The active contour model (ACM) is performed by the Chan-Vese model, and the result of each component is gained separately. Finally, the ultimate results are obtained by merging the result of each component together. Through experiments we can get a conclusion that this method can get more accurate and smoother lip contour. Meanwhile, the proposed method is more efficient compared with the classic ACM because it avoids some problems in the classic active contour model, like the radius of the initial contour needs to be set manually according to the size of images.
机译:嘴唇分割是嘴唇读取系统中的关键步骤之一,因为它与系统识别的准确性密切相关。在本文中,我们旨在提高嘴唇分割的准确性。提出了一种新颖的色彩空间,该色彩空间由CIE-LUV空间中的U分量以及离散Hartley变换(DHT)后图像的C2和C3分量之和组成。我们选择菱形作为初始轮廓,因为它的形状相对接近于闭合的嘴唇形状。这些概念是根据活动轮廓模型的方法实现的。活动轮廓模型(ACM)由Chan-Vese模型执行,并且每个分量的结果都是单独获得的。最后,通过将每个组件的结果合并在一起获得最终结果。通过实验我们可以得出结论,该方法可以获得更准确,更平滑的嘴唇轮廓。同时,与传统的ACM相比,该方法效率更高,因为它避免了经典主动轮廓模型中的一些问题,例如需要根据图像大小手动设置初始轮廓的半径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号