首页> 外文期刊>International journal of parallel programming >Location-based and Time-aware Service Recommendation in Mobile Edge Computing
【24h】

Location-based and Time-aware Service Recommendation in Mobile Edge Computing

机译:基于位置和移动边缘计算中的时间感知服务推荐

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of Internet of Things, mobile edge computing which provides physical resources closer to end users has gained considerable popularity in academic and industrial field. As the number of edge server increases, accessing effective edge services fast is an urgent problem to be solved. In this paper, we mainly focus on the cold-start problem for service recommendation based on location of users and services. Address this conundrum, we propose a service recommendation method based on collaborative filtering (CF) and location, by comprehensively considering the characteristic of services at the edge, mobility and demands of users at different time periods. In detail, we synthesize the service characteristics of each dimension in different time slices through multidimensional weighting method at first. Then We further introduce the idea of Inverse CF Rec to the traditional CF and predict the lost quality of service (QoS) to solve the problem of sparse data. Finally, a recommendation algorithm based on predicted QoS and user geographic location is proposed to recommend appropriate services to users. The experimental results show that our multidimensional inverse similarity recommendation algorithm based on time-aware collaborative filtering (MDITCF) outperforms Inverse CF Rec in terms of the accuracy of recommendation.
机译:随着物联网的快速发展,移动边缘计算,提供更接近最终用户的物理资源在学术和工业领域获得了相当普遍的普及。随着边缘服务器的数量增加,快速访问有效边缘服务是一个亟待解决的问题。在本文中,我们主要关注基于用户和服务的位置的服务推荐的冷启动问题。解决这一难题,我们提出了一种基于协作过滤(CF)和位置的服务推荐方法,通过全面考虑在不同时间段的用户处的服务的特征,移动性和需求的特征。详细地,我们首先通过多维加权方法综合不同时间片中的每个维度的服务特性。然后我们进一步介绍了逆CF rec到传统CF的想法,并预测了丢失的服务质量(QoS)以解决稀疏数据的问题。最后,提出了一种基于预测QoS和用户地理位置的推荐算法,向用户推荐适当的服务。实验结果表明,基于时间感知协作滤波(MDITCF)的多维反相推荐算法优于推荐准确性的反向CF r次。

著录项

  • 来源
    《International journal of parallel programming》 |2021年第5期|715-731|共17页
  • 作者单位

    Department of Computer Science and Engineering East China University of Science and Technology Shanghai China Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai China;

    Department of Computer Science and Engineering East China University of Science and Technology Shanghai China;

    Department of Computer Science and Engineering East China University of Science and Technology Shanghai China;

    Department of Computer Science and Engineering East China University of Science and Technology Shanghai China Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    QoS; Mobile edge computing; Recommendation; Time-aware; Location;

    机译:QoS;移动边缘计算;推荐;时代;地点;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号