首页> 外文期刊>International journal of parallel programming >Optimizing OpenMP Programs on Software Distributed Shared Memory Systems
【24h】

Optimizing OpenMP Programs on Software Distributed Shared Memory Systems

机译:在软件分布式共享内存系统上优化OpenMP程序

获取原文
获取原文并翻译 | 示例

摘要

This paper describes compiler techniques that can translate standard OpenMP applications into code for distributed computer systems. OpenMP has emerged as an important model and language extension for shared-memory parallel programming. However, despite OpenMP's success on these platforms, it is not currently being used on distributed system. The long-term goal of our project is to quantify the degree to which such a use is possible and develop supporting compiler techniques. Our present compiler techniques translate OpenMP programs into a form suitable for execution on a Software DSM system. We have implemented a compiler that performs this basic translation, and we have studied a number of hand optimizations that improve the baseline performance. Our approach complements related efforts that have proposed language extensions for efficient execution of OpenMP programs on distributed systems. Our results show that, while kernel benchmarks can show high efficiency of OpenMP programs on distributed systems, full applications need careful consideration of shared data access patterns. A naive translation (similar to OpenMP compilers for SMPs) leads to acceptable performance in very few applications only. However, additional optimizations, including access privatization, selective touch, and dynamic scheduling, resulting in 31% average improvement on our benchmarks.
机译:本文介绍了可将标准OpenMP应用程序转换为分布式计算机系统代码的编译器技术。 OpenMP已经成为共享内存并行编程的重要模型和语言扩展。但是,尽管OpenMP在这些平台上取得了成功,但目前尚未在分布式系统上使用它。我们项目的长期目标是量化这种使用的可能性,并开发支持的编译器技术。我们当前的编译器技术将OpenMP程序转换为适合在Software DSM系统上执行的形式。我们已经实现了执行此基本转换的编译器,并且研究了许多改进基线性能的手动优化。我们的方法是对相关工作的补充,这些工作已经建议了语言扩展以在分布式系统上有效执行OpenMP程序。我们的结果表明,尽管内核基准测试可以显示分布式系统上OpenMP程序的高效率,但是完整的应用程序需要仔细考虑共享数据访问模式。天真的转换(类似于SMP的OpenMP编译器)仅在很少的应用程序中才可以实现可接受的性能。但是,其他优化措施(包括访问私有化,选择性触摸和动态计划)使我们的基准平均提高了31%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号