首页> 外文期刊>International journal of parallel programming >Alloyed Branch History: Combining Global and Local Branch History for Robust Performance
【24h】

Alloyed Branch History: Combining Global and Local Branch History for Robust Performance

机译:合金化分支历史:结合全球和本地分支历史以实现稳定的性能

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces alloyed prediction, a new hardware-based two-level branch predictor organization that combines global and local history in the same structure, combining the advantages of current two-level predictors with those of hybrid predictors. The alloyed organization is motivated by measurements showing that wrong-history mispredictions are even more important than conflict-induced mispredictions. Wrong-history mispredictions arise because current two-level, history-based predictors provide only global or only local history. The contribution of wrong history to the overall misprediction rate is substantial because most programs have some branches that require global history and others that require local history. This paper explores several ways to implement alloyed prediction, including the previously proposed bi-mode organization. Simulations show that mshare is the best alloyed organization among those we examine, and that mshare gives reliably good prediction compared to bimodal ("two-bit"), two-level, and hybrid predictors. The robust performance of alloying across a range of predictor sizes stems from its ability to attack wrong-history mispredictions at even very small sizes without subdividing the branch prediction hardware into smaller and less effective components.
机译:本文介绍了合金化预测,这是一个基于硬件的新型两级分支预测器组织,该组织在同一结构中结合了全局历史记录和局部历史记录,并结合了当前两级预测器和混合预测器的优势。合金化组织的动机在于测量表明,错误历史的错误预测比冲突引起的错误预测更为重要。由于当前基于历史的两级预测器仅提供全局或局部历史记录,因此出现了错误的历史错误预测。错误的历史对总体错误预测率的影响是巨大的,因为大多数程序的某些分支需要全局历史,而另一些分支则需要本地历史。本文探讨了实现合金化预测的几种方法,包括先前提出的双模组织。模拟显示,在我们研究的那些中,mshare是最好的合金化组织,并且与双峰(“两位”),两级和混合预测器相比,mshare提供了可靠的良好预测。在各种预测器尺寸范围内进行合金化的强大性能源于其即使在非常小的尺寸下仍能对错误历史错误预测进行攻击的能力,而无需将分支预测硬件细分为更小和效果更差的组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号