首页> 外文期刊>International journal of parallel programming >Managing Burstiness and Scalability in Event-Driven Models on the SpiNNaker Neuromimetic System
【24h】

Managing Burstiness and Scalability in Event-Driven Models on the SpiNNaker Neuromimetic System

机译:在SpiNNaker神经模拟系统上的事件驱动模型中管理突发性和可伸缩性

获取原文
获取原文并翻译 | 示例

摘要

Neural networks present a fundamentally different model of computation from the conventional sequential digital model, for which conventional hardware is typically poorly matched. However, a combination of model and scalability limitations has meant that neither dedicated neural chips nor FPGA's have offered an entirely satisfactory solution. SpiNNaker introduces a different approach, the "neuromimetic" architecture, that maintains the neural optimisation of dedicated chips while offering FPGA-like universal configurability. This parallel multiprocessor employs an asynchronous event-driven model that uses interrupt-generating dedicated hardware on the chip to support real-time neural simulation. Nonetheless, event handling, particularly packet servicing, requires careful and innovative design in order to avoid local processor congestion and possible deadlock. We explore the impact that spatial locality, temporal causality and burstiness of traffic have on network performance, using tunable, biologically similar synthetic traffic patterns. Having established the viability of the system for real-time operation, we use two exemplar neural models to illustrate how to implement efficient event-handling service routines that mitigate the problem of burstiness in the traffic. Extending work published in ACM Computing Frontiers 2010 with on-chip testing, simulation results indicate the viability of SpiNNaker for large-scale neural modelling, while emphasizing the need for effective burst management and network mapping. Ultimately, the goal is the creation of a library-based development system that can translate a high-level neural model from any description environment into an efficient SpiNNaker instantiation. The complete system represents a general-purpose platform that can generate an arbitrary neural network and run it with hardware speed and scale.
机译:神经网络提供了与常规顺序数字模型根本不同的计算模型,传统的顺序数字模型通常无法很好地匹配这些模型。但是,模型和可伸缩性限制的结合意味着专用神经芯片和FPGA都没有提供完全令人满意的解决方案。 SpiNNaker引入了另一种方法,即“神经模拟”架构,该架构在提供专用于FPGA的通用可配置性的同时,保持专用芯片的神经优化。该并行多处理器采用异步事件驱动模型,该模型使用芯片上产生中断的专用硬件来支持实时神经仿真。尽管如此,事件处理,特别是数据包服务,需要仔细创新的设计,以避免本地处理器拥塞和可能的死锁。我们使用可调节的,生物学上相似的合成流量模式,探索流量的空间局部性,时间因果关系和流量突发性对网络性能的影响。建立了实时操作系统的可行性之后,我们使用两个示例神经模型来说明如何实施有效的事件处理服务例程,以减轻流量中突发性的问题。仿真结果扩展了ACM Computing Frontiers 2010中发布的工作,并进行了片上测试,仿真结果表明SpiNNaker对于大规模神经建模具有可行性,同时强调了有效的突发管理和网络映射的必要性。最终,目标是创建一个基于库的开发系统,该系统可以将任何描述环境中的高级神经模型转换为高效的SpiNNaker实例化。完整的系统代表了一个通用平台,该平台可以生成任意神经网络并以硬件速度和规模运行它。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号