首页> 外文期刊>International journal of parallel programming >Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments
【24h】

Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments

机译:HPC云环境中的数据位置感知科学工作流调度方法

获取原文
获取原文并翻译 | 示例

摘要

Efficient data-aware methods in job scheduling, distributed storage management and data management platforms are necessary for successful execution of data-intensive applications. However, research about methods for data-intensive scientific applications are insufficient in large-scale distributed cloud and cluster computing environments and data-aware methods are becoming more complex. In this paper, we propose a Data-Locality Aware Workflow Scheduling (D-LAWS) technique and a locality-aware resource management method for data-intensive scientific workflows in HPC cloud environments. D-LAWS applies data-locality and data transfer time based on network bandwidth to scientific workflow task scheduling and balances resource utilization and parallelism of tasks at the node-level. Our method consolidates VMs and consider task parallelism by data flow during the planning of task executions of a data-intensive scientific workflow. We additionally consider more complex workflow models and data locality pertaining to the placement and transfer of data prior to task executions. We implement and validate the methods based on fairness in cloud environments. Experimental results show that, the proposed methods can improve performance and data-locality of data-intensive workflows in cloud environments.
机译:作业调度,分布式存储管理和数据管理平台中有效的数据感知方法对于成功执行数据密集型应用程序必不可少。但是,在大规模分布式云和集群计算环境中,对数据密集型科学应用方法的研究不足,并且数据感知方法变得越来越复杂。在本文中,我们为HPC云环境中的数据密集型科学工作流提出了一种数据本地感知工作流调度(D-LAWS)技术和一种本地感知资源管理方法。 D-LAWS将基于网络带宽的数据局部性和数据传输时间应用于科学的工作流任务调度,并在节点级别平衡资源利用率和任务的并行性。我们的方法在规划数据密集型科学工作流的任务执行过程中,整合了虚拟机并考虑了数据流的任务并行性。我们还考虑了与任务执行之前的数据放置和传输有关的更复杂的工作流程模型和数据局部性。我们在云环境中基于公平性实施和验证方法。实验结果表明,所提出的方法可以提高云环境中数据密集型工作流的性能和数据局部性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号