首页> 外文期刊>International Journal of Parallel Programming >Correlating Radio Astronomy Signals with Many-Core Hardware
【24h】

Correlating Radio Astronomy Signals with Many-Core Hardware

机译:使射电天文信号与多核硬件相关

获取原文
获取原文并翻译 | 示例

摘要

A recent development in radio astronomy is to replace traditional dishes with many small antennas. The signals are combined to form one large, virtual telescope. The enormous data streams are cross-correlated to filter out noise. This is especially challenging, since the computational demands grow quadratically with the number of data streams. Moreover, the correlator is not only computationally intensive, but also very I/O intensive. The LOFAR telescope, for instance, will produce over 100 terabytes per day. The future SKA telescope will even require in the order of exaflops, and petabits/s of I/O. A recent trend is to correlate in software instead of dedicated hardware, to increase flexibility and to reduce development efforts. We evaluate the correlator algorithm on multi-core CPUs and many-core architectures, such as NVIDIA and ATI GPUs, and the Cell/B.E. The correlator is a streaming, real-time application, and is much more I/O intensive than applications that are typically implemented on many-core hardware today. We compare with the LOFAR production correlator on an IBM Blue Gene/P supercomputer. We investigate performance, power efficiency, and programmability. We identify several important architectural problems which cause architectures to perform suboptimally. Our findings are applicable to data-intensive applications in general. The processing power and memory bandwidth of current GPUs are highly imbalanced for correlation purposes. While the production correlator on the Blue Gene/P achieves a superb 96% of the theoretical peak performance, this is only 16% on ATI GPUs, and 32% on NVIDIA GPUs. The Cell/B.E. processor, in contrast, achieves an excellent 92%. We found that the Cell/B.E. and NVIDIA GPUs are the most energy-efficient solutions, they run the correlator at least 4 times more energy efficiently than the Blue Gene/P. The research presented is an important pathfinder for next-generation telescopes.
机译:射电天文学的最新发展是用许多小型天线代替传统天线。信号被合并形成一个大型的虚拟望远镜。巨大的数据流互相关以滤除噪声。这特别具有挑战性,因为计算需求随数据流的数量呈二次方增长。此外,相关器不仅计算量大,而且I / O量也大。例如,LOFAR望远镜每天将产生超过100 TB的数据。未来的SKA望远镜甚至将需要Exaflops和I / O的能力。最近的趋势是在软件而不是专用硬件中进行关联,以增加灵活性并减少开发工作。我们在多核CPU和多核架构(例如NVIDIA和ATI GPU)以及Cell / B.E上评估相关器算法。该相关器是一种流式实时应用程序,并且与当今通常在多核硬件上通常实现的应用程序相比,其I / O强度更高。我们将其与IBM Blue Gene / P超级计算机上的LOFAR生产相关器进行比较。我们研究性能,电源效率和可编程性。我们确定了一些导致体系结构性能欠佳的重要体系结构问题。我们的发现通常适用于数据密集型应用程序。出于关联目的,当前GPU的处理能力和内存带宽高度不平衡。虽然Blue Gene / P上的生产相关器达到了理论峰值性能的96%,但在ATI GPU上仅为16%,在NVIDIA GPU上仅为32%。单元/B.E。相比之下,处理器达到了92%的出色水平。我们发现Cell / B.E。 NVIDIA GPU是最节能的解决方案,它们运行相关器的能量至少是Blue Gene / P的4倍。提出的研究是下一代望远镜的重要探路者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号