首页> 外文期刊>International journal of non-linear mechanics >Nonlinear supersonic post-flutter motion of panels with adjacent bays and thermal effects
【24h】

Nonlinear supersonic post-flutter motion of panels with adjacent bays and thermal effects

机译:具有相邻托架和热效应的面板的非线性超声波颤动运动

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Aerospace vehicle structures in the supersonic regime flight have their outer skin subjected to unsteady aerodynamic and thermal loading, which may lead to aeroelastic instability. Typical aerospace structures are built as multiple adjacent panels, the so-called multi-bay configuration, but early efforts to predict the supersonic flutter were based on a single panel arrangement. This work evaluates the aeroelastic behavior of supersonic multi-bay fluttering panels under thermal effects, aiming to improve the understanding of adjacent panels interaction in the nonlinear regime. The aeroelastic model is established by using the first-order quasi-steady piston theory in conjunction with isotropic panel model using the von Karman's assumptions to account for geometrical nonlinearities. The Newmark time-integration method is used to evaluate the resulting equations of motion. The Hopf bifurcation behavior that determines the flutter onset, thermo-buckling loading, phase portrait plots, and bifurcation diagrams for two adjacent panels are presented. The numerical results show the detrimental aspect of thermal loading in the aeroelastic behavior of fluttering panels, and the new findings corroborate with some recent studies that highlight the difference in the nonlinear flutter behavior between a single panel and multi-bay panels. Moreover, the existence of limit cycle oscillations amplitude jumps from a certain level of flow dynamic pressure is also observed. The multi-bay panels configuration also shows the anticipation of the buckled to the limit cycle oscillation solutions, when compared with a single panel analysis. Results indicate that simplified single bay panel assumptions can underestimate the post-flutter oscillations amplitudes of the adjacent bay. Such dynamic behavior may lead to a negative impact on aircraft structural design and fatigue life estimation.
机译:超音速制度飞行中的航空航天车辆结构​​使其外壳受到不稳定的空气动力学和热负荷,这可能导致空气弹性不稳定。典型的航空航天结构由多个相邻面板,所谓的多架配置,但预测超音速颤动的早期努力基于单个面板布置。这项工作评估了超音速多架飘动板在热效应下的空气弹性行为,旨在改善对非线性制度中相邻面板相互作用的理解。使用Von Karman的假设与各向同性面板模型结合使用von Karman来解释几何非线性的主题,通过使用一阶准稳态的活塞理论来建立空气弹性模型。纽马克时间集成方法用于评估结果的运动方程。展示了Hopf分岔行为,用于确定扑振磁,热屈曲,相位肖像图以及两个相邻面板的分叉图。数值结果表明,振动板的空气弹性行为中的热负荷的不利方面,以及许多最近研究的新发现,其突出了单个面板和多架板之间的非线性颤动行为的差异。此外,还观察到存在极限循环振荡幅度从一定水平的流动动态压力跳跃。与单面板分析相比,多架电池板配置还显示了屈曲至极限周期振荡解决方案的预期。结果表明,简化的单架面板假设可以低估相邻托架的颤振振荡振荡。这种动态行为可能导致对飞机结构设计和疲劳寿命估计的负面影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号