...
首页> 外文期刊>International journal of non-linear mechanics >A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers
【24h】

A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers

机译:非晶聚合物玻璃化转变行为的有限形变分数粘塑性模型

获取原文
获取原文并翻译 | 示例

摘要

The stress response of amorphous polymers exhibits tremendous change during the glass transition region, from soft viscoelastic response to stiff viscoplastic response. In order to describe the temperature-dependent and rate dependent stress response of amorphous polymers, we extend the one-dimensional small strain fractional Zener model to the three-dimensional finite deformation model. The Eyring model is adopted to represent the stress activated viscous flow. A phenomenological evolution equation of yield strength is used to describe the strain softening behaviors. We demonstrate that the stress response predicted by the three-dimensional model is consistent with that of one-dimensional model under uniaxial deformation, which confirms the validity of the extension. The model is then applied to describe the stress response of an amorphous thermoset at various temperatures and strain rates, which shows good agreement between experiments and simulation. We further perform a parameter study to investigate the influence of the model parameters on the stress response. The results show that a smaller fractional order results in a larger yield strain while has little effect on the yield stress when the temperature is below the glass transition temperature. For the stress relaxation tests, a smaller fractional order leads to a slower relaxation rate.
机译:从软的粘弹性响应到硬的粘塑性响应,无定形聚合物的应力响应在玻璃化转变区域表现出巨大的变化。为了描述非晶聚合物的温度依赖性和速率依赖性应力响应,我们将一维小应变分数齐纳模型扩展到了三维有限变形模型。采用Eyring模型来表示应力激活的粘性流。用屈服强度的现象演化方程来描述应变软化行为。我们证明了三维模型所预测的应力响应与一维模型在单轴变形下的应力响应是一致的,这证实了延伸的有效性。然后将该模型应用于描述非晶态热固性材料在各种温度和应变速率下的应力响应,这表明实验与仿真之间具有很好的一致性。我们进一步进行参数研究,以研究模型参数对应力响应的影响。结果表明,当温度低于玻璃化转变温度时,较小的分数阶会导致较大的屈服应变,而对屈服应力的影响很小。对于应力松弛测试,较小的分数阶会导致较慢的松弛速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号