首页> 外文期刊>International journal of multiscale computational engineering >THERMODYNAMICALLY CONSISTENT APPROACH FOR ONE-DIMENSIONAL PHENOMENOLOGICAL MODELING OF SHAPE MEMORY ALLOYS
【24h】

THERMODYNAMICALLY CONSISTENT APPROACH FOR ONE-DIMENSIONAL PHENOMENOLOGICAL MODELING OF SHAPE MEMORY ALLOYS

机译:形状记忆合金的一维现象学模型的热力学一致方法

获取原文
获取原文并翻译 | 示例

摘要

The present work investigates the thermodynamic inconsistency in the definition of constant and nonconstant material functions for the one-dimensional shape-memory alloy constitutive models, with respect to the first principles. Thermodynamic consistency for the one-dimensional shape memory alloy differential equation is also investigated within the framework of one-dimensional elasticity at different length scales of stress and martensite fraction. It is shown that the previously proposed improvements in constitutive models using compatible nonconstant material functions cannot be derived from the first principles, yielding inconsistencies in the definition of the differential form of the constitutive relations. Additionally, the compatibility conditions on stress due to the previously defined compatible material functions in terms of constant and nonconstant material functions are also discussed. Derivations are provided to highlight the inconsistencies in the definition of differential form of constitutive relation due to previously proposed expressions for material functions. Finally, in this work new expressions for the differential equation with constant material function and corresponding transformation tensor are derived from the first principles. Subsequently, a consistent form of a differential constitutive model for shape-memory alloys is proposed. The discussions highlight that there is further requirement to propose compatible forms of nonconstant material functions through consistent definition of differential form of constitutive relation, which may help to further rebuild the 2D and 3D SMA models based on multiscale modeling.
机译:本工作研究关于一维形状记忆合金本构模型的恒定和非恒定材料函数定义中的热力学矛盾,这是关于第一个原理的。一维形状记忆合金微分方程的热力学一致性也在应力和马氏体分数的不同长度尺度上的一维弹性框架内进行了研究。结果表明,先前提出的使用兼容的非恒定材料函数的本构模型的改进不能从第一原理中得出,从而在本构关系的微分形式的定义上产生不一致。另外,还讨论了由于先前定义的相容材料功能而根据恒定和非恒定材料功能产生的应力相容性条件。由于先前提出的物质功能表达式,提供了派生以突出本构关系的微分形式的定义中的不一致。最后,在这项工作中,从第一原理推导了具有恒定材料函数和相应变换张量的微分方程的新表达式。随后,提出了形状记忆合金微分本构模型的一致形式。讨论突出表明,还需要通过一致定义本构关系的微分形式来提出非恒定材料功能的兼容形式,这可能有助于进一步基于多尺度建模重建2D和3D SMA模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号