首页> 外文期刊>International journal of modeling, simulation and scientific computing >Short- and long-term predictions of novel corona virus using mathematical modeling and artificial intelligence methods
【24h】

Short- and long-term predictions of novel corona virus using mathematical modeling and artificial intelligence methods

机译:使用数学建模和人工智能方法的新型电晕病的短期和长期预测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes spread prediction of novel corona virus outbreak using different compartmental models and artificial intelligence (AI) methods. Real data for several months is collected from the Ministry of Health (MOH) website, Kingdom of Saudi Arabia and two compartmental models, namely SIR (susceptible, infectious, recovered) and SEIRD (susceptible, exposed, infectious, recovered, dead) are utilized to best fit the data. AI methods are well suited for short- and long-term stochastic forecasts. Keeping in view the inherent advantages of Al methods, adaptive neuro-fuzzy inference system (ANFIS) models are trained using the collected data to replicate the dynamic behavior of the COVID-19 spread in Kingdom of Saudi Arabia. The prediction comparison for COVID-19 spread is made between the compartmental and ANFIS models for both short- and long-term forecasts of the experimental data. From the presented results, ANFIS-based models show superior performance as compared to compartmental models.
机译:本文提出了使用不同隔间模型和人工智能(AI)方法的新型电晕病毒爆发的传播预测。从卫生部(MOH)网站,沙特阿拉伯王国和两个隔间模型的真实数据,即使用SIR(易感染,感染,恢复)和SCIRD(易感,暴露,传染,恢复,死亡)。最适合数据。 AI方法非常适用于短期和长期随机预测。保持看来Al方法的固有优势,使用所收集的数据训练自适应神经模糊推理系统(ANFIS)模型,以复制沙特阿拉伯王国的Covid-19传播的动态行为。 Covid-19扩散的预测比较是在隔间和ANFIS模型之间进行实验数据的短期和长期预测。从所提出的结果,基于ANFIS的模型与隔间模型相比表现出卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号