首页> 外文期刊>International journal of machine learning and cybernetics >Efficiently detecting overlapping communities using seeding and semi-supervised learning
【24h】

Efficiently detecting overlapping communities using seeding and semi-supervised learning

机译:使用播种和半监督学习有效地检测重叠的社区

获取原文
获取原文并翻译 | 示例

摘要

A common scheme for discovering overlapping communities in a network is to use a seeding process followed by an expansion process. Most seeding methods are either too complex to scale to large networks or too simple to select high-quality seeds. Additionally, the non-principled functions used by most expansion methods lead to poor performances when applied to diverse networks. This paper proposes a new method that transforms a network into a corpus. Each edge is treated as a document, and all the network nodes are treated as terms of the corpus. We propose an effective seeding method that selects seeds as a training set, and a principled expansion method based on semi-supervised learning that classifies the edges. We compared our new algorithm with four other community detection algorithms on a wide range of synthetic and empirical networks. Our experimental results show that the new algorithm significantly improved the clustering performance in most cases. Furthermore, the time complexity of the new algorithm is linear with respect to the number of edges, which means that the technique can be scaled to large networks.
机译:在网络中发现重叠社区的常见方案是使用播种过程,然后进行扩展过程。大多数播种方法要么太复杂而无法扩展到大型网络,要么太简单而无法选择高质量的种子。此外,大多数扩展方法使用的非原则功能在应用于各种网络时会导致性能下降。本文提出了一种将网络转换为语料库的新方法。每个边缘都被视为文档,所有网络节点都被视为语料库。我们提出了一种选择种子作为训练集的有效播种方法,以及一种基于对边缘进行分类的半监督学习的有原则的扩展方法。我们在广泛的综合和经验网络上将我们的新算法与其他四种社区检测算法进行了比较。我们的实验结果表明,在大多数情况下,新算法可显着提高聚类性能。此外,新算法的时间复杂度相对于边沿数量是线性的,这意味着该技术可以扩展到大型网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号