首页> 外文期刊>International journal of intelligent information and database systems >A parallel dimensionality reduction for time-series data and some of its applications
【24h】

A parallel dimensionality reduction for time-series data and some of its applications

机译:时间序列数据的并行降维及其某些应用

获取原文
获取原文并翻译 | 示例

摘要

The subsequence matching in a large time-series database has been an interesting problem. Many methods have been proposed that cope with this problem in an adequate extent. One of the good ideas is reducing properly the dimensionality of time-series data. In this paper, we propose a new method to reduce the dimensionality of high-dimensional time-series data. The method is simpler than existing ones based on the discrete Fourier transform and the discrete cosine transform. Furthermore, our dimensionality reduction may be executed in parallel. The method is used to time-series data matching problem and it decreases drastically the complexity of the corresponding algorithm. The method preserves planar geometric blocks and it is also applied to minimum bounding rectangles as well.
机译:大型时间序列数据库中的子序列匹配一直是一个有趣的问题。已经提出了许多方法来适当地解决这个问题。好的主意之一是适当降低时间序列数据的维数。在本文中,我们提出了一种减少高维时间序列数据维数的新方法。该方法比基于离散傅里叶变换和离散余弦变换的现有方法简单。此外,我们的降维可以并行执行。该方法用于时间序列数据匹配问题,并大大降低了相应算法的复杂度。该方法保留了平面几何块,并且也适用于最小边界矩形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号