首页> 外文期刊>International journal of information and computer security >Speeding up Euclid's GCD algorithm with no magnitude comparisons
【24h】

Speeding up Euclid's GCD algorithm with no magnitude comparisons

机译:无需幅度比较即可加速Euclid的GCD算法

获取原文
获取原文并翻译 | 示例

摘要

Euclid's Greatest Common Divisor (GCD) algorithm is an efficient approach for calculating multiplicative inversions. It relies mainly on a fast modular arithmetic algorithm to run quickly. A traditional modular arithmetic algorithm based on nonrestoring division needs a magnitude comparison for each iteration of shift-and-subtract operation. This process is time consuming, since it requires magnitude comparisons for every computation iteration step. To eradicate this problem, this study develops a new fast Euclidean GCD algorithm without magnitude comparisons. The proposed modular algorithm has an execution time that is about 33% shorter than the conventional modular algorithm.
机译:欧几里得的最大公约数(GCD)算法是一种计算乘法反演的有效方法。它主要依靠快速的模块化算术算法来快速运行。传统的基于非还原除法的模块化算术算法需要对移位与减法运算的每次迭代进行大小比较。此过程非常耗时,因为它需要对每个计算迭代步骤进行幅度比较。为了消除这个问题,本研究开发了一种无需幅度比较的新型快速欧几里德GCD算法。所提出的模块化算法的执行时间比传统的模块化算法短约33%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号