首页> 外文期刊>International journal of hydrogen energy >Increasing biohydrogen production by metabolic engineering
【24h】

Increasing biohydrogen production by metabolic engineering

机译:通过代谢工程增加生物氢的产生

获取原文
获取原文并翻译 | 示例
       

摘要

Two types of enzymes can catalyze the reduction of protons to H_2, namely nitrogenase and hydrogenase. Although much progress has been made in the elucidation of gene expression, structure and regulation of these key enzymes, no practical and economically competitive process for the continuous production of biological H_2 (biohydrogen) has, as yet, been put on the market. One of the difficulties is due to the fact that H_2 output represents an energy loss for the cell and that microbial metabolic network has evolved for rationalization of energy use and optimization of specific growth rate. The study of the physiology of genetically modified photosynthetic microorganisms has shown that electron flux could be redirected to the bidirectional hydrogenase in a ndhB mutant of Synechocystis and that a change in carbon metabolism in mutants of Rhodobacter capsulatus unable to grow photoautotrophically could affect the flow of reducing equivalent from organic substrates to nitrogenase. Increasing the flux through an existing pathway or redirecting enzyme-catalyzed reactions is an approach referred to as metabolic engineering. Various "naturally engineered" organisms are found in Nature. An example is provided by the bacterium Dehalococcoides ethenogenes, which is the only bacterium known to reductively dechlorinate the ground water pollutants tetrachloroethene and trichloethene to ethene. D. ethenogenes exhibits an unusual metabolic specialization; it uses only H_2 as an electron donor and chlorinated compounds as electron acceptors to support growth. In accordance, the sequence of its genome has revealed the presence of five hydrogenase complexes.
机译:两种类型的酶可以催化质子还原为H_2,即固氮酶和氢化酶。尽管在阐明这些关键酶的基因表达,结构和调控方面已经取得了很大进展,但是,至今仍未投放市场上可以连续生产生物H_2(生物氢)的实用且经济上具有竞争力的方法。困难之一是由于以下事实:H_2输出代表细胞的能量损失,并且微生物代谢网络已经发展为合理利用能量和优化特定增长率。对转基因光合微生物的生理学研究表明,电子通量可以重定向到集胞藻的ndhB突变体中的双向氢化酶,并且不能光养自养的荚膜红细菌突变体中碳代谢的变化可能影响还原菌的流动。当量从有机底物到固氮酶。通过现有途径增加通量或重定向酶催化反应是一种被称为代谢工程的方法。在自然界中发现了各种“天然工程”生物。嗜盐脱卤菌(Dehalococcoides ethenogenes)细菌提供了一个例子,这是已知的唯一一种将地下水污染物四氯乙烯和三氯乙烯还原为氯的细菌。 D. ethenogenes表现出不同寻常的代谢专长;它仅使用H_2作为电子供体,并使用氯化化合物作为电子受体来支持生长。因此,其基因组序列揭示了五个氢化酶复合物的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号