首页> 外文学位 >Metabolic engineering and systems biology for increasing biofuel production in microalgae.
【24h】

Metabolic engineering and systems biology for increasing biofuel production in microalgae.

机译:用于增加微藻生物燃料产量的代谢工程和系统生物学。

获取原文
获取原文并翻译 | 示例

摘要

The saccharification of starch coupled with fermentation to ethanol and the transesterification of vegetable oils to produce biodiesel are mature technologies that currently provide the majority of biofuels in the United States. However, traditional food-based starch and oil feedstocks, such as corn and soybean, cannot meet our current fuel demands and their use remains controversial. Microalgae have been of recent interest for use as a biofuel feedstock because they can produce large quantities of carbohydrates and lipids, contain little recalcitrant biomass, and do not impact the food supply. In the green alga Chlamydomonas reinhardtii, the primary carbohydrate produced is starch and the primary storage lipid produced is triacylglyceride (TAG), but high yields of these bioenergy carriers are usually only found under conditions of nutrient stress (N, S, P). As a strategy for increasing TAG yields, starchless mutants that divert carbon away from starch biosynthesis and into TAG production were investigated. These starchless mutants produce more TAG than wildtype, but at the expense of total productivity and lower overall anabolic activity. To increase starch levels, a native enzyme key to starch biosynthesis, isoamylase 1 (ISA1), was introduced into these algae which resulted in starch excess phenotypes. These mutant strains accumulate 3 to 4 fold more total glucan under nutrient-replete conditions by diverting metabolic flux into starch biosynthesis at the expense of cell division and protein synthesis. The starches produced by these algae are more crystalline and larger in size than wildtype. None of the current genetically-tractable model algal species are competitive TAG production strains. To alleviate this the commercially cultivated, oleaginous alga Nannochloropsis gaditana CCMP526 was developed into a new model algal species for investigating TAG production. The genome and transcriptome was sequence and assembled, gene models developed, and metabolic pathways in this organism were reconstructed. Phylogenomic analysis identified genetic attributes of this organism, including gene expansions and unique stramenopile photosynthesis genes, that may explain the distinguishing oleaginous phenotypes observed. The availability of a genome sequence and transformation method are facilitating investigations into N. gaditana lipid biosynthesis and will permit genetic engineering strategies to further improve this naturally productive algal strain.
机译:淀粉的糖化,与乙醇的发酵以及植物油的酯交换反应以生产生物柴油是成熟的技术,目前在美国提供了大多数生物燃料。但是,传统的基于食品的淀粉和石油原料(例如玉米和大豆)无法满足我们目前的燃料需求,因此其使用仍存在争议。微藻作为生物燃料的原料已引起人们的关注,因为它们可以产生大量的碳水化合物和脂质,几乎不含顽固的生物质,并且不影响食品的供应。在绿藻莱茵衣藻中,产生的主要碳水化合物是淀粉,产生的主要储藏脂质是甘油三酯(TAG),但是这些生物能源载体的高产量通常仅在营养胁迫(N,S,P)的条件下才能发现。作为提高TAG产量的一种策略,研究了将淀粉从淀粉生物合成转移到TAG生产中的无淀粉突变体。这些无淀粉突变体比野生型产生更多的TAG,但以总生产力和较低的总合成代谢活性为代价。为了增加淀粉水平,将淀粉生物合成的关键酶异淀粉酶1(ISA1)引入这些藻类中,这会导致淀粉过多的表型。这些突变菌株在营养丰富的条件下,通过将代谢通量转移到淀粉生物合成中而积聚了3至4倍的总葡聚糖,而以细胞分裂和蛋白质合成为代价。与野生型相比,这些藻类产生的淀粉更结晶,尺寸更大。当前的遗传上易处理的模型藻种都不是竞争性TAG生产菌株。为了减轻这种情况,将商业种植的油质藻Nannochloropsis gaditana CCMP526开发为一种新型的藻种,用于研究TAG的产生。对基因组和转录组进行测序和组装,建立基因模型,并重建该生物中的代谢途径。系统生物学分析确定了该生物的遗传属性,包括基因扩展和独特的Stramenopile光合作用基因,这可以解释观察到的独特油性表型。基因组序列和转化方法的可用性正在促进对加迪纳猪笼草脂质生物合成的研究,并将允许基因工程策略进一步改善这种天然生产的藻株。

著录项

  • 作者

    Jinkerson, Robert Edward.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Chemistry Biochemistry.;Chemistry General.;Biology Botany.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号