...
首页> 外文期刊>International journal of hydrogen energy >New multi-physics approach for modelling and design of alkaline electrolyzers
【24h】

New multi-physics approach for modelling and design of alkaline electrolyzers

机译:碱性电解槽建模和设计的新的多物理场方法

获取原文
获取原文并翻译 | 示例

摘要

This work presents a multi-physics model used for the design and diagnosis of the alkaline electrolyzers. The model is based on a new approach that allows to choose precisely the design parameters of a new electrolyzer even if it is not commercially available and pre dicting energy consumption, efficiency and rate of hydrogen production, taking into account to their physical state and various operating conditions. The approach differs from those of conventional models of the following: It allows the characterization of the elec trolyzer based on its structural parameters in a relatively short time (few minutes) compared with the conventional approach which need experimental data collected for few weeks (Ulleberg). The approach allows describing a range of alkaline electrolyzers, while semi-empirical models found in literature are inherent to a specific electrolyzer. In addi tion, the model takes into account the variation of all structural parameters (geometry, materials and their evolution depending on operating conditions) and operational parameters of the electrolyzer (temperature, pressure, concentration, bulk bubbling and recovery rate of electrode surface by the bubble), while the models in the literature involve only the temperature. The developed multi-physics model was programmed in a Matlab Simulink® environment and an alkaline electrolyzer's simulation tool was developed. The simulation tool was validated using two industrial (Stuart and Phoebus) electrolyzers with different structures and power rates. Simulation results reproduced experimental data with good accuracy (less than 0.9%). The simulation tool was also used to compare the energy efficiency of two hydrogen production systems. The first one is based on atmo spheric electrolyzer with a compressor for hydrogen storage and the second one is a barometric electrolyzer (under pressure) with its auxiliary devices to identify the effective mode of hydrogen production according to the physical state and operating conditions of the electrolyzer. The analysis of results revealed that the second mode of hydrogen production is more efficient and confirms the results of the literature based solely on the thermodynamic approach (K. Onda et al) without the input of the power consumed by power overvoltages.
机译:这项工作提出了一种用于设计和诊断碱性电解槽的多物理场模型。该模型基于一种新方法,该方法可以精确选择新电解器的设计参数,即使该新电解器不市售,也可以考虑其物理状态和各种操作来预测能耗,效率和产氢率条件。该方法与以下常规模型不同:与需要数周实验数据的常规方法相比,该方法可以在较短的时间内(几分钟)根据其结构参数对电解槽进行表征。 。该方法允许描述一系列碱性电解槽,而文献中发现的半经验模型是特定电解槽固有的。此外,该模型还考虑了所有结构参数(几何形状,材料及其随运行条件而变化的变化)和电解槽运行参数(温度,压力,浓度,体积起泡和电极表面回收率)的变化。气泡),而文献中的模型仅涉及温度。在MatlabSimulink®环境中编程开发的多物理场模型,并开发了碱性电解器的仿真工具。使用两个具有不同结构和功率费率的工业(Stuart和Phoebus)电解槽对仿真工具进行了验证。仿真结果以良好的准确性(小于0.9%)重现了实验数据。该模拟工具还用于比较两个制氢系统的能源效率。第一个是基于常压电解器,带有用于储氢的压缩机,第二个是气压电解器(在压力下),带有辅助装置,可根据电解器的物理状态和运行条件确定有效的制氢模式。结果分析表明,第二种制氢方式效率更高,并且完全基于热力学方法(K. Onda等人)证实了文献的结果,而无需输入因过电压而消耗的功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号