首页> 外文期刊>International journal of hydrogen energy >Two-dimensional multi-physics modeling of porous transport layer in polymer electrolyte membrane electrolyzer for water splitting
【24h】

Two-dimensional multi-physics modeling of porous transport layer in polymer electrolyte membrane electrolyzer for water splitting

机译:水分解聚合物电解质膜电解槽多孔传输层的二维多物理建模

获取原文
获取原文并翻译 | 示例
       

摘要

Polymer electrolyte membrane (PEM) electrolyzers have received increasing attention for renewable hydrogen production through water splitting. In present work, a two-dimensional (2-D) multi-physics model is established for PEM electrolyzer to describe the two-phase flow, electron/proton transfer, mass transport, and water electrolysis kinetics with focus on the porous transport layer (PTL) and the channel-land structure. After comparing four sets of experimental data, the model is employed to investigate PTL thickness impact on liquid water saturation and local current density. It is found that the PTL under the land may have much lower liquid saturation than that under the channel due to land blockage. The PTL thickness may significantly impact liquid water access to the catalyst layer (CL) under the land. Specifically, the 100 mu m thick PTL shows less than 1% liquid saturation at the CL-PTL interface under 4-5 A/cm(2), leading to water starvation and electrolyzer voltage increase. As the operating current density decreases under 2-3.5 A/cm(2), the liquid saturation recovers and increases to about 10-20%. In thicker PTLs, the liquid saturation is higher under the land reaching 30-40% at the CL-PTL interface under 5 A/cm(2) for 200 and 500 mu m thick PTLs. For the 100 mu m thick PTL, the local current density drops to below 0.5 A/cm(2) under the land with 5 A/cm(2) average current density. For the 200 and 500 mu m thick PTLs, the local current is almost uniform in the in-plane direction. The numerical model is extremely valuable to investigate PTL properties and dimensions to optimize channel-land design and configuration for high performing electrolyzers. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:聚合物电解质膜(PEM)电解槽通过水分解得到可再生氢生产的增加。在目前的工作中,为PEM电解槽建立了二维(2-D)多物理模型,以描述双相流动,电子/质子转移,质量传输和水电解动力,重点在多孔传输层上( PTL)和渠道 - 土地结构。在比较四组实验数据之后,采用模型来研究PTL厚度对液体水饱和度和局部电流密度的影响。发现土地下方的PTL可能具有远低于由于陆地堵塞而下的液体饱和度。 PTL厚度可以显着影响液体水分进入陆地下的催化剂层(CL)。具体地,100μm厚的PTL在4-5A / cm(2)下的CL-PTL界面处显示出小于1%的液态饱和,导致水饥饿和电解电压增加。随着工作电流密度在2-3.5A / cm(2)下降下,液体饱和度恢复并增加至约10-20%。在较厚的PTL中,在5A / cm(2)下的CL-PTL界面下达到30-40%的液体饱和度较高200和500μm厚的PTL。对于100μm厚的PTL,局部电流密度下降到下方的底层低于0.5A / cm(2),5A / cm(2)平均电流密度。对于200和500μm厚的PTL,局部电流在面内方向上几乎均匀。数值模型非常有价值,以研究PTL性能和尺寸,以优化高性能电解器的通道 - 土地设计和配置。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2020年第58期|32984-32994|共11页
  • 作者单位

    Univ Calif Irvine Dept Mech & Aerosp Engn Renewable Energy Resources Lab RERL Irvine CA 92697 USA;

    Univ Calif Irvine Dept Mech & Aerosp Engn Renewable Energy Resources Lab RERL Irvine CA 92697 USA;

    Giner Inc Newton MA 02466 USA;

    Giner Inc Newton MA 02466 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PEM; Electrolyzer; Modeling; Porous transport layer (PTL); Multiphysics; Thickness;

    机译:PEM;电解柜;建模;多孔传输层(PTL);多麦草学;厚度;
  • 入库时间 2022-08-18 23:01:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号