...
首页> 外文期刊>International journal of hydrogen energy >Large Eddy Simulation of the flame stabilization process in a scramjet combustor with rearwall-expansion cavity
【24h】

Large Eddy Simulation of the flame stabilization process in a scramjet combustor with rearwall-expansion cavity

机译:具有后壁膨胀腔的超燃冲压燃烧器火焰稳定过程的大涡模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Large Eddy Simulation (LES) was employed to study the flame stabilization process in a hydrogen fueled scramjet combustor with a rearwall-expansion cavity. The numerical solver was first validated for a reactive flow, the scramjet combustor with rearwall-expansion cavity case, and the numerical results were shown in good agreement with the available experimental data. Effects of different cavity configurations and equivalence ratios on the flame stabilization process were then studied. It was found that during the combustion process, the most concentrated heat release regions are all located near the cavity rear wall. Besides, the majority of heat release regions are existed in the supersonic zones and attached to the sonic lines. The flame distribution in the combustor is sensitive to the equivalence ratio, and a thin flame would be formed when further decreasing the equivalence ratio. At the same equivalence ratio, the cavity with lower rear wall will delay the occurrence of chemical reaction and form a more concentrated and intense heat release region downstream the cavity, which will accelerate the chemical reaction and also achieve a sufficient combustion in the combustor. For the rearwall-expansion cavity, both the cavity configuration and equivalence ratio should be combined to optimize the flame stabilization process in the combustor. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:大涡模拟(LES)用于研究具有后壁膨胀腔的氢燃料超燃式燃烧器的火焰稳定过程。首先对数值解算器的反应流进行了验证,对带有后壁膨胀腔的超燃冲压燃烧器进行了验证,数值结果与现有的实验数据吻合良好。然后研究了不同空腔结构和当量比对火焰稳定过程的影响。发现在燃烧过程中,最集中的放热区域都位于腔体后壁附近。此外,绝大部分的放热区域都存在于超音速区域并附着在声波线上。燃烧室中的火焰分布对当量比敏感,当进一步降低当量比时会形成稀薄的火焰。在相同的当量比下,具有较低后壁的空腔将延迟化学反应的发生,并在空腔下游形成更集中且强度更高的放热区域,这将加速化学反应并在燃烧室中实现充分燃烧。对于后壁膨胀腔,应将腔的构型和当量比结合起来以优化燃烧室的火焰稳定过程。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2016年第42期|19278-19288|共11页
  • 作者单位

    Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China;

    Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rearwall-expansion cavity; Flame stabilization; Cavity configuration; Equivalence ratio; OpenFOAM;

    机译:后壁膨胀腔;火焰稳定;腔结构;当量比;OpenFOAM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号