...
首页> 外文期刊>International Journal of Heat and Mass Transfer >The role of solid surface structure on dropwise phase change processes
【24h】

The role of solid surface structure on dropwise phase change processes

机译:固体表面结构在逐滴相变过程中的作用

获取原文
获取原文并翻译 | 示例

摘要

We compared the phase change behavior of a partially wetting fluid, nonane, on various SiO_2 surfaces that had been modified to alter their roughness at the nanoscale. We compared a total of four surfaces: an as-received, smooth surface; a surface roughened by plasma-enhanced chemical vapor deposition (PECVD) of SiO_2; and two surfaces where SiO_2 nanorods had been deposited using glancing angle deposition (GLAD). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the surfaces. The topography of the rough surface controlled the wetting characteristics of the fluid that in turn, controlled the change-of-phase heat transfer rate. The measured apparent contact angle characterized the wetting property during the phase change process. Surface roughness promoted wetting in this system, but the direction of heat transfer controlled the topographic design required for enhanced performance. A comparison between two nanorod coatings of differing heights shows that the longer nanorod coating (30 nm high) acted somewhat like a porous surface promoting condensation heat transfer while the shorter nanorod coating (10 nm high) was much more effective at promoting evaporative heat transfer. Surface alteration at the scale over which intermolecular forces dominates the fluid-solid interaction provides a convenient means for probing those interactions.
机译:我们比较了部分润湿的流体壬烷在各种SiO_2表面上的相变行为,这些表面已被改性以改变纳米级的粗糙度。我们总共比较了四个表面:接收到的光滑表面;通过SiO_2的等离子体化学气相沉积(PECVD)使表面粗糙化;并使用掠角沉积(GLAD)沉积了SiO_2纳米棒的两个表面。扫描电子显微镜(SEM)和原子力显微镜(AFM)用于表征表面。粗糙表面的形貌控制了流体的润湿特性,进而控制了相变传热速率。测得的表观接触角表征了相变过程中的润湿性。表面粗糙度在该系统中促进了润湿,但是热传递的方向控制了增强性能所需的形貌设计。两种不同高度的纳米棒涂层之间的比较显示,较长的纳米棒涂层(高30 nm)的行为有点像多孔表面,促进了冷凝热传递,而较短的纳米棒涂层(高10 nm)在促进蒸发热传递方面更为有效。在分子间力主导流体-固体相互作用的尺度上的表面变化提供了探测这些相互作用的便利手段。

著录项

  • 来源
  • 作者单位

    Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States;

    Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States;

    Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States Future Chips Constellation, Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, United States;

    Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States Future Chips Constellation, Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, United States;

    Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States;

    Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    roughness; contact angle; evaporation; condensation; nanorod;

    机译:粗糙度接触角蒸发;缩合;纳米棒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号