...
首页> 外文期刊>International Journal of Heat and Mass Transfer >High heat flux phase change on porous carbon nanotube structures
【24h】

High heat flux phase change on porous carbon nanotube structures

机译:多孔碳纳米管结构上的高热通量相变

获取原文
获取原文并翻译 | 示例

摘要

Carbon nanotube (CNT) forests are investigated as porous wick structures for chip-scale heat pipe cooling systems. An analytical model is developed to demonstrate the merits of phase change heat transfer on nanoscale porous structures, compared to that on microscale porous wick. Results indicate that nanoscale porous structures increase the thin-film evaporation surface area by one order of magnitude, which can significantly increase phase change heat transfer efficiency. The pertinent wick structure properties of the CNT forest are experimentally measured. Results show that the CNT forest is highly porous (~95% poros ity), and possesses large variations in effective thermal conductivity ranging from 0.8 to 180W/mK. Effective pore size of the CNT wick structure varies between 50 and 180 nm, which can generate capillary pressure up to two orders of magnitude higher than the microscale wick structure. However, its low per meability, about three to four orders of magnitude lower than the traditional wicks, underscores the necessity of bi-porous CNT wick structures. The bi-porous CNT wick structures are composed of nano scale porous CNT clusters, separated by microscale (~50 μm wide) passages. Experimental results show a maximum heat flux of 770 W/cm~2 over a 2 mm × 2 mm heating area. With enhanced thin-film evapo ration, heat transfer coefficients are improved by up to 100%, compared to the microscale wick. In con trast, the low CHF ~140 W/cm~2 over a 10 × 10 mm~2 heating area is caused by vapor occupation of the microscale pores and the reduction of wick permeability.
机译:碳纳米管(CNT)森林被用作芯片级热管冷却系统的多孔芯结构。建立了一个分析模型,以证明与微米级多孔芯相比,纳米级多孔结构上相变传热的优点。结果表明,纳米级多孔结构将薄膜蒸发表面积增加了一个数量级,这可以显着提高相变传热效率。通过实验测量了CNT林的相关芯结构特性。结果表明,碳纳米管森林具有很高的孔隙度(约95%的孔隙度),有效导热系数在0.8至180W / mK之间有较大的差异。 CNT芯吸结构的有效孔径在50到180 nm之间变化,与微孔芯吸结构相比,它可以产生高达两个数量级的毛细管压力。然而,它的低介电常数,比传统灯芯低约三到四个数量级,强调了双孔CNT灯芯结构的必要性。双孔CNT吸液芯结构由纳米级多孔CNT簇组成,并由微米级(〜50μm宽)通道隔开。实验结果表明,在2 mm×2 mm的加热面积上,最大热通量为770 W / cm〜2。与微型灯芯相比,通过增强的薄膜蒸发,传热系数提高了100%。相比之下,在10×10 mm〜2的加热区域中,CHF较低,约为140 W / cm〜2,这是由于微孔的蒸气占据和芯吸渗透性降低所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号