首页> 外文期刊>International Journal of Heat and Mass Transfer >A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness
【24h】

A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness

机译:纳米流体的热导率和纳米层厚度的确定的半分析模型

获取原文
获取原文并翻译 | 示例
       

摘要

Nanofluid shows a huge potential to be the next-generation heat transfer fluid since the nanoparticles can suspend in the base fluids for a long time and the thermal conductivity of the nanofluid can be far above those of convectional solid-liquid suspension. It has long been known that liquid molecules close to a solid surface can form a layer which is solid-like in structure, but little is known about the connection between this layer and the thermal properties of the suspension. In this study, a semi-analytical model for calculating the enhanced thermal conductivity of nanofluids is derived from the steady heat conduction equation in spherical coordinates. The effects of nanolayer thickness, nanoparticle size, volume fraction, thermal conductivity of nanoparticles and base fluid are discussed. A linear thermal conductivity profile inside the nanolayer is considered in the present model. The proposed model, while investigating the impact of the interfacial nanolayer on the effective thermal conductivity of nanofluids, provides an equation to determine its nanolayer thickness for different types of nanofluids. Hence, different relationships between the nanolayer thickness and the nanoparticle size are found for each type of nanofluid. Moreover, based on the present model's prediction, it is found that the effective thermal conductivities of nanofluids show the same result as the Maxwell model when the nanolayer thickness value approaches to zero. Lastly, the effective thermal conductivities of different types of nanofluids calculated by the present model is in good agreement with the experimental results and the prediction is much better than the Maxwell model and Bruggeman model.
机译:纳米流体显示出成为下一代传热流体的巨大潜力,因为纳米颗粒可以长时间悬浮在基础流体中,并且纳米流体的热导率可以远远高于对流固液悬浮体。早已知道,靠近固体表面的液体分子可以形成结构上呈固体状的层,但是对于该层与悬浮液的热性能之间的联系知之甚少。在这项研究中,从球形坐标系中的稳态热传导方程中得出了用于计算纳米流体增强的热导率的半分析模型。讨论了纳米层厚度,纳米颗粒尺寸,体积分数,纳米颗粒和基础流体的热导率的影响。在本模型中考虑了纳米层内部的线性导热系数分布。所提出的模型在研究界面纳米层对纳米流体有效导热率的影响时,提供了一个方程式,以确定不同类型的纳米流体的纳米层厚度。因此,对于每种类型的纳米流体,发现纳米层厚度和纳米颗粒尺寸之间的不同关系。此外,基于当前模型的预测,发现当纳米层厚度值接近零时,纳米流体的有效导热率显示出与麦克斯韦模型相同的结果。最后,本模型计算出的不同类型纳米流体的有效热导率与实验结果吻合较好,其预测效果要好于麦克斯韦模型和布鲁格曼模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号