首页> 外文期刊>International Journal of Heat and Mass Transfer >Effect of nanoparticle deposit layer properties on pool boiling critical heat flux of water from a thin wire
【24h】

Effect of nanoparticle deposit layer properties on pool boiling critical heat flux of water from a thin wire

机译:纳米颗粒沉积层性质对细丝中水沸腾沸腾临界热通量的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Recent pool boiling heat transfer studies of nanofluids showed that nanoparticle deposit layer formed on a heater surface during nanofluid boiling can significantly increase critical heat flux (CHF). To identify the key parameter responsible for this observation, the effects of surface properties of the deposit layer on CHF of water were systemically studied, using various nanoparticle deposit layers applied to a thin wire heater by boiling in nanofluids. Different structures of nanoparticle deposits were obtained by controlling heat flux and time duration during nanofluid boiling. The deposit layers were quantitatively characterized using the surface parameters relevant to CHF phenomena, including wettability, capillarity and layer thickness. Performance of the nanoparticle deposits was then evaluated through pool boiling CHF experiments in distilled water. It was found that while wettability fails to interpret the CHF values on thin nanoparticle deposit wires, capillarity and thickness of the layers shows good correlations. It is supposed that nanoparticle deposit layer with a thickness increases pore volumes to hold liquid macrolayer and induces capillary liquid flow toward dry area underneath bubbles growing on a heater surface, thus effectively delaying occurrence of local dryout and subsequent overwhelming rise of surface temperature that is the dominant mechanism of CHF on a thin wire.
机译:最近对纳米流体的池沸腾传热研究表明,在纳米流体沸腾期间在加热器表面形成的纳米颗粒沉积层可以显着提高临界热通量(CHF)。为了确定负责此观察的关键参数,系统地研究了沉积层的表面性质对水的CHF的影响,使用了通过在纳米流体中沸腾而应用于细线加热器的各种纳米颗粒沉积层。通过控制纳米流体沸腾过程中的热通量和持续时间,可以获得不同结构的纳米颗粒沉积物。使用与CHF现象相关的表面参数对沉积层进行定量表征,包括润湿性,毛细作用和层厚。然后通过在蒸馏水中的池沸腾CHF实验评估纳米颗粒沉积物的性能。已经发现,尽管润湿性不能解释薄的纳米颗粒沉积线上的CHF值,但是层的毛细作用和厚度显示出良好的相关性。据推测,具有一定厚度的纳米颗粒沉积层会增加孔体积,以保持液体大分子层,并促使毛细管液体流向加热器表面上气泡生长下方的干燥区域,从而有效地延迟了局部干燥的发生以及随后表面温度的压倒性上升,即CHF在细线上的主导机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号