首页> 外文期刊>International Journal of Heat and Mass Transfer >Enhanced boiling heat transfer on plain and featured surfaces using acoustic actuation
【24h】

Enhanced boiling heat transfer on plain and featured surfaces using acoustic actuation

机译:借助声激励增强了在普通表面和特征表面上的沸腾传热

获取原文
获取原文并翻译 | 示例
           

摘要

Two-phase thermal management based on submerged boiling heat transfer has received considerable attention in recent years because of its potential to achieve high heat fluxes along with its relatively simple hardware and system-level coupling. However, this attractive heat transfer approach has been hampered by the critical heat flux (CHF) limit on the maximum heat transfer, which is caused by the dynamics of the vapor bubbles that form on the heated surface and the subsequent transition to film boiling that produces a large increase in the surface temperature. Recent work at Georgia Tech has exploited low-power ultrasonic acoustic forcing to enhance boiling heat transfer and increase the CHF limit by controlling the formation and evolution of the vapor bubbles and inhibiting the instabilities that lead to film boiling. These effects are investigated with plain and textured (surface-embedded microchannels) boiling heat transfer base surfaces. Even without acoustic actuation, the transfer of makeup fluid to the boiling sites in the presence of surface microchannels passively decreases the surface superheat and increases in the CHF by 218% compared to plain surfaces. Acoustic actuation has a profound effect on the onset and evolution of boiling by inducing interfacial forces that affect the bubbles' contact line with the surface and lead to bubble detachment. Heat transfer measurements with acoustic actuation demonstrate a significant increase in the CHF as the acoustic field impedes the formation of large vapor columns and inhibits the instability that results in the collapse of these columns into a vapor film. The improvements in the CHF in stagnant bulk fluid exceed 66% for the plain surface (up to 183 W/cm~2), and 31% for the textured surface (up to 460 W/cm2 with a 7 ℃ reduction in surface superheat).
机译:近年来,基于淹没式沸腾传热的两相热管理因其具有实现高热通量的潜力以及相对简单的硬件和系统级耦合的能力而备受关注。但是,这种有吸引力的传热方法受到最大传热的临界热通量(CHF)限制的困扰,这是由在加热表面上形成的蒸汽泡的动力学以及随后产生的薄膜沸腾转变引起的表面温度大幅上升。佐治亚理工学院的最新工作已利用低功率超声波强迫来控制沸腾气泡的形成和发展并抑制导致薄膜沸腾的不稳定性,从而提高沸腾传热并提高CHF极限。使用平整的和有纹理的(表面嵌入式微通道)沸腾传热基面来研究这些效果。即使没有声控激励,在存在表面微通道的情况下,补充液向沸点的转移也会被动地减少表面过热,并且与普通表面相比,CHF会增加218%。声致动通过产生影响气泡与表面的接触线并导致气泡分离的界面力,对沸腾的发生和发展产生深远的影响。通过声驱动进行的传热测量结果表明,CHF显着增加,因为声场会阻碍大型蒸气色谱​​柱的形成,并抑制导致这些色谱柱塌陷成蒸气膜的不稳定性。滞留的散装流体中CHF的改善超过平表面的66%(最高183 W / cm〜2),有纹理的表面的CHF的提高超过31%(最高460 W / cm2,表面过热降低7℃) 。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2017年第2017期|181-190|共10页
  • 作者单位

    George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology. 771 Ferst Drive, Atlanta, GA 30332-0405, United States;

    George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology. 771 Ferst Drive, Atlanta, GA 30332-0405, United States;

    George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology. 771 Ferst Drive, Atlanta, GA 30332-0405, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Boiling; Heat transfer; MicroChannel; Acoustic; Critical heat flux; Ultrasound;

    机译:沸腾;传播热量;微通道;声学临界热通量;超音波;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号