首页> 外文期刊>International Communications in Heat and Mass Transfer >Enhanced boiling heat transfer on micro-structured surfaces via ultrasonic actuation
【24h】

Enhanced boiling heat transfer on micro-structured surfaces via ultrasonic actuation

机译:通过超声驱动增强微结构表面上的沸腾传热

获取原文
获取原文并翻译 | 示例
       

摘要

Emerging issues in boiling heat transfer include enhancing heat transfer uniformity/stability, and critical heat flux (CHF). Microcavity structures improve heat transfer uniformity/stability by departing bubbles with arranged formation due to pinning effects and regular pitch. Ultrasonic actuation induces an acoustic field on departed bubbles, and this enhances contact line instability between the bubble and microcavity structures, resulting in an increased dissipation rate of smaller bubbles. In this study, we demonstrate that synergetic effects from microcavity structures and ultrasonic actuation can enhance CHF and thermal stability while also improving temporal/spatial temperature uniformity. Applying microcavity structures with ultrasonic actuation, we observe smaller and faster bubbles' departure with the proposed formation. These bubble departure characteristics on the microcavity surface with ultrasonic actuation enhance CHF and thermal stability by delaying bubble coalescence and ensuring liquid paths between smaller and faster-departed bubbles. Thus, when ultrasonic actuation is applied to the microcavity structure, CHF increased by 20%, and temporal/spatial temperature variations near CHF were reduced to less than 1/2 and 1/3, respectively, compared to no actuation case. This research will help to understand the interaction of ultrasonic wave and bubbles, and to show the way to overcome CHF limitations of passive methods using microsized structures.
机译:沸腾传热中出现的新问题包括提高传热均匀性/稳定性和临界热通量(CHF)。微腔结构通过由于钉扎效应和规则的间距而使气泡以排列的形式离开而改善了传热均匀性/稳定性。超声波致动会在离去的气泡上产生声场,这会增加气泡与微腔结构之间的接触线不稳定性,从而导致较小气泡的耗散率提高。在这项研究中,我们证明了微腔结构和超声驱动的协同作用可以增强CHF和热稳定性,同时还可以改善时间/空间温度均匀性。将微腔结构与超声驱动一起应用,我们观察到所提出的地层气泡越来越小且越快。借助超声波驱动,微腔表面上的这些气泡离开特性可通过延迟气泡合并并确保较小和较快分离的气泡之间的液体路径来提高CHF和热稳定性。因此,与无驱动情况相比,当将超声驱动应用于微腔结构时,CHF增大了20%,CHF附近的时空温度变化分别减小至小于1/2和1/3。这项研究将有助于理解超声波和气泡的相互作用,并显示出克服使用微型结构的被动方法的CHF限制的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号