首页> 外文期刊>International Journal of Heat and Mass Transfer >Self-consistent surface-temperature boundary condition for liquefying-fuel-based hybrid rockets internal-ballistics simulation
【24h】

Self-consistent surface-temperature boundary condition for liquefying-fuel-based hybrid rockets internal-ballistics simulation

机译:液化 - 燃料的混合火箭内弹性仿真自洽表面温度边界条件

获取原文
获取原文并翻译 | 示例
       

摘要

A novel methodology for the calculation of the surface temperature of liquefying fuels typically burned in hybrid rockets is proposed. This procedure stems from the formulation of a fuel in-depth pyrolysis model coupled with the resolution of the thermo-fluid-dynamic field in the rocket combustion chamber, which allows for the characterization of the unstable liquid layer formed on top of the fuel surface. The aim is the simulation of the internal ballistics of hybrid rocket engines fed by paraffin-based fuels without the need for parametrically assigning the surface temperature to match the experimental data as, indeed, required in the authors' previous work. With the presented technique, surface temperature and fuel vaporization rate are calculated locally along the wall, and, with the integration of a liquid fuel entrainment model, which requires the tuning of just one parameter (i.e. the so-called entrainment factor), the fuel regression rate is determined. The overall numerical approach, upon the assumption that the liquid fuel is in the supercritical pressure regime, is based on the solution of the Reynolds-averaged Navier-Stokes equations for single-phase multicomponent turbulent reacting flow. A series of numerical simulations are carried out to unveil the effect of the oxygen mass flux, which allowed deriving an approximate analytical equation for the regression rate prediction. A set of hot fires of a laboratory-scale hybrid rocket are reproduced through single numerical simulations carried out on the fuel port average geometry in the burn to validate the computational model, showing deviations between the measured and predicted average regression rate less than 4.5%. In order to fairly match also the fuel consumption axial profile, transient numerical simulations over the entire engine firing are conducted with which the post-burn port shape is captured with maximum error of 8%.
机译:提出了一种用于计算液化燃料的表面温度的新方法,通常在混合火箭射箭中燃烧。该方法源于与火箭燃烧室中的热流体 - 动态场的分辨率相结合的燃料深度热解模型的配方,这允许形成在燃料表面的顶部的不稳定液体层的表征。目的是通过基于石蜡基燃料喂养的混合火箭发动机的内部弹道模拟,而无需参数分配表面温度以使实验数据相匹配,实际上是在作者之前的工作中所需的。利用所提出的技术,表面温度和燃料蒸发速率沿着壁局部计算,并且液体燃料夹带模型的整合,这需要调整仅一个参数(即所谓的夹带因子),燃料确定回归率。在假设液体燃料处于超临界压力调节时,整体数值方法是基于雷诺平均的Navier-Stokes方程的溶液,用于单相多组分湍流反应流动。进行了一系列数值模拟以推出氧气质量磁通的影响,这允许导出回归速率预测的近似分析方程。通过在燃烧的燃料端口平均几何形状上进行的单一数值模拟来再现一组实验室混合火箭的热火,以验证计算模型,显示测量和预测的平均回归率之间的偏差小于4.5%。为了相当匹配的燃料消耗轴向轮廓,通过其​​捕获后燃烧后端口形状的瞬态数值模拟,最大误差为8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号