...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Modelling sorption equilibria and kinetics in numerical simulations of dynamic sorption experiments in packed beds of salt/zeolite composites for thermochemical energy storage
【24h】

Modelling sorption equilibria and kinetics in numerical simulations of dynamic sorption experiments in packed beds of salt/zeolite composites for thermochemical energy storage

机译:盐/沸石复合材料填充床中动态化学吸附实验数值模拟中的吸附平衡和动力学建模

获取原文
获取原文并翻译 | 示例
           

摘要

Composite materials consisting of a salt-impregnated porous host matrix constitute a way to combine the high energy storage density of hygroscopic salts with the fast kinetics of the carrier material. Depending on its pore structure the carrier can furthermore prevent or inhibit leakage of the salt solution. It has been shown experimentally that by impregnation with CaCl2 the heat storage density of zeolite Ca-X can be increased by 53% to 270 kWh m(-3), which confirms the potential of this material class. In transforming this potential into technical heat storage solutions, numerical simulations can support the design process by bridging the gap between material characterization, process specification and reactor design. Such simulations rest, among others, on suitable constitutive relations. For the equilibria and kinetics of salt/zeolite composite sorbents those relations are still missing in the literature. In this work, we present an axisymmetric model of the mass and heat transport through a packed bed of composite sorbent pellets accounting for radial effects such as increased bed void fraction near the sorption chamber walls. Special focus is laid on the modelling of the sorption equilibria and kinetics of CaCl2/zeolite Ca-X composites of various salt loadings. The developed sorption equilibrium model for arbitrary salt loadings of the CaCl2/ zeolite Ca-X is based on isotherm measurements of only one composite sample and one sample of pure zeolite Ca-X thereby enabling reduced experimental effort for the equilibrium characterization. The linear driving force kinetics is calibrated using data from dynamic sorption experiments on zeolite Ca-X and used to predict the dynamic sorption behaviour of CaCl2/zeolite Ca-X composites. We found a good predictive capability of the unmodified kinetics model for high inlet humidities-i.e., the practically most relevant cases where the composite plays its strengths. Contrarily, for low inlet humidities, the used kinetics model strongly overestimates the sorption rate, which indicates the presence of additional kinetic inhibition mechanisms under such conditions. (C) 2018 Elsevier Ltd. All rights reserved.
机译:由含盐的多孔基质构成的复合材料构成了一种将吸湿盐的高能量存储密度与载体材料的快速动力学相结合的方式。取决于其孔结构,载体还可以防止或抑制盐溶液的泄漏。实验表明,通过用CaCl2浸渍,Ca-X沸石的储热密度可以提高53%,达到270 kWh m(-3),这证实了这种材料类别的潜力。在将这种潜力转化为蓄热技术解决方案时,数值模拟可以弥合材料表征,工艺规范和反应堆设计之间的差距,从而为设计过程提供支持。这样的模拟除其他外,基于适当的本构关系。对于盐/沸石复合吸附剂的平衡和动力学,文献中仍缺少这些关系。在这项工作中,我们提出了通过复合吸附剂颗粒填充床的质量和热传输的轴对称模型,该模型考虑了径向效应,例如在吸附室壁附近的床空隙率增加。特别着重于各种盐含量的CaCl2 /沸石Ca-X复合材料的吸附平衡和动力学建模。针对任意盐加载的CaCl2 /沸石Ca-X,开发的吸附平衡模型基于仅对一个复合样品和一个纯沸石Ca-X样品的等温线测量,从而减少了用于平衡表征的实验工作。线性驱动力动力学是使用来自沸石Ca-X的动态吸附实验数据进行校准的,并用于预测CaCl2 /沸石Ca-X复合材料的动态吸附行为。我们发现未经修饰的动力学模型对高入口湿度具有良好的预测能力-即,实际上最相关的情况是复合材料发挥了作用。相反,对于低入口湿度,所使用的动力学模型强烈高估了吸附速率,这表明在这种条件下还存在其他动力学抑制机制。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号