首页> 外文期刊>International Journal of Heat and Mass Transfer >Heat transfer analysis of methane hydrate dissociation by depressurization and thermal stimulation
【24h】

Heat transfer analysis of methane hydrate dissociation by depressurization and thermal stimulation

机译:减压和热刺激分解甲烷水合物的传热分析

获取原文
获取原文并翻译 | 示例
           

摘要

The dissociation of natural gas hydrate is an endothermic reaction closely related with the heat transfer characteristics in porous media. This study mainly focuses on the three-dimensional heat transfer behaviors during hydrate dissociation by depressurization and thermal stimulation based on the experiments in a Cuboid Pressure Vessel (CPV). The evolution of various heat flows (including the heat transferred from the boundariesQB, the injected heat from the wellQinj, the heat consumed by the hydrate dissociationQH, and the sensible heat change of the depositQS) and their relationships during hydrate dissociation are obtained through numerical simulation. The heat lossQLduring gas production is calculated and analyzed for the first time. It is found that the hydrate dissociation is mainly promoted by the driving forces of depressurization (Fdep) and thermal stimulation (Fths), which are dependent on the heat flows ofQBandQinj, respectively. The effect ofFdepwill be weakened under higherFths. Part ofQinjandQBare absorbed and stored asQSby the porous media and the fluids of the deposit. OnceQBbecomes negative, it starts to make contribution to the heat loss instead of the hydrate dissociation, resulting in a sharp increase ofQL. In addition, a proper thermal stimulation rateqand production pressurePWshould be selected so that the hydrate dissociation rate could be significantly enhanced while the thermal efficiency and energy efficiency are still favorable when compared with using single depressurization.
机译:天然气水合物的解离是吸热反应,与多孔介质中的传热特性密切相关。本研究主要基于长方体压力容器(CPV)中的实验,着重研究通过减压和热刺激进行水合物分解时的三维传热行为。通过数值模拟获得了各种热流的演化(包括从边界QB传递的热量,从井Qinj注入的热量,水合物分解QH消耗的热量以及沉积物QS的显热变化)及其在水合物分解过程中的关系。 。首次计算并分析了产气过程中的热量损失QL。发现水合物的解离主要是由降压(Fdep)和热刺激(Fths)的驱动力促进的,这分别取决于QB和Qinj的热流。 Fthp的效果在较高的Fth下会减弱。 QinjandQB的一部分被多孔介质和沉积物的流体吸收并存储为QS。一旦QB变为负值,它将开始对热量损失做出贡献,而不是水合物离解,从而导致QL急剧增加。另外,应选择适当的热刺激率q和生产压力PW,以便与单次减压相比,可显着提高水合物的解离速率,同时热效率和能量效率仍然有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号