首页> 外文期刊>Energy >Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells
【24h】

Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells

机译:结合双水平井的温水增产减压进行甲烷水合物分解的生产行为和传热特性

获取原文
获取原文并翻译 | 示例
           

摘要

To investigate into the synergistic effect of depressurization and heat stimulation on hydrate dissociation and the three-dimensional heat transfer characteristics during hydrate dissociation in the porous media, a series of the hydrate dissociation experimental runs by the depressurization in conjunction with warm water injection with DWDH (dual horizontal wells) and single depressurization have been carried out in a three-dimensional CHS (cubic hydrate simulator). The results indicate that the gas production process can be divided into the free gas release stage, the mixed gas release stage, and the dissociated gas release stage. In the first two stages, the gas production is mainly controlled by the depressurizing rate. In the third stage, the duration of the hydrate dissociation with the DWDH method (water injection temperature equals to environmental temperature) is much shorter than that by the single depressurization. It is due to the fact that water injection enhances the heat convection and further increases the rate of the hydrate dissociation. The analysis of three-dimensional heat transfer shows that the heat transfer rate along the injection well is the fastest. Energy analysis indicates that the sensible heat of the hydrate reservoir is insufficient for the hydrate dissociation, and the heat for the hydrate dissociation mainly originates from the boundaries. (C) 2014 Elsevier Ltd. All rights reserved.
机译:为了研究减压和热刺激对水合物解离的协同作用以及多孔介质中水合物解离过程中的三维传热特性,通过降压结合DWDH的温水注入进行了一系列水合物解离实验(双水平井)和单减压已在三维CHS(立方水合物模拟器)中进行。结果表明,产气过程可分为游离气体释放阶段,混合气体释放阶段和离解气体释放阶段。在前两个阶段,产气量主要受降压速率控制。在第三阶段,用DWDH方法分解水合物的持续时间(注水温度等于环境温度)比单次减压的时间短得多。这是由于注水增强了热对流并进一步增加了水合物的离解速率。三维传热分析表明,沿注水井的传热速度最快。能量分析表明,水合物储层的显热不足以进行水合物的离解,而水合物离解的热量主要来自边界。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy》 |2015年第1期|315-324|共10页
  • 作者单位

    Univ Chinese Acad Sci, Beijing 100083, Peoples R China.;

    Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou 510640, Guangdong, Peoples R China.;

    Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou 510640, Guangdong, Peoples R China.;

    Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou 510640, Guangdong, Peoples R China.;

    Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou 510640, Guangdong, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrate dissociation; Depressurizing rate; Heat transfer characteristics; Dual horizontal well;

    机译:水合物分解;降压速率;传热特性;双水平井;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号