首页> 外文期刊>Energy >Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization
【24h】

Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization

机译:减压甲烷水合物贮藏器等温生产过程中的冰行为和传热特性

获取原文
获取原文并翻译 | 示例
           

摘要

Methane hydrate is a new environmentally friendly alternative energy source in the future. During its conventional production process by depressurization, ice behaviors and heat transfer characteristics are two key factors affecting the hydrate dissociation rate. In this study, different reservoir temperatures (276.2, 277.2 and 278.2 K) and production pressures (2.3, 2.6 and 3.1 MPa) were employed to investigate the methane hydrate production process. Icing, which increases the reservoir temperature and signifi-cantly promotes the dissociation of hydrates instantaneously, is generally observed under 2.3 MPa production pressure due to the large temperature decrease by depressurization. Higher initial temperatures decrease both the formation amount and melting duration of ice, and higher production pressures can avoid the formation of ice by decreasing the temperature drop. In addition, both ice melting and hydrate dissociation are isothermal when limited by the external heat supply. During the hundreds of minutes of ice melting process, the area with ice is estimated to shrink gradually. Similarly, the dissociation rate of hydrates is controlled by the heat supply and even becomes constant when the driving force is small enough (high production pressure). The results of this study are significant for the rate control of methane hydrate exploitation. (c) 2021 Elsevier Ltd. All rights reserved.
机译:甲烷水合物是未来新的环保替代能源。在通过减压的传统生产过程中,冰行为和传热特性是影响水合物解离率的两个关键因素。在该研究中,使用不同的储层温度(276.2,277.2和278.2 k)和生产压力(2.3,2.6和3.1MPa)来研究甲烷水合物生产方法。糖化,增加储层温度并显着促进水合物的解离,通常在2.3MPa生产压力下观察到由于压降大的温度降低。较高的初始温度降低了冰的形成量和熔化持续时间,并且通过降低温度降低,较高的生产压力可以避免形成冰。此外,当通过外部供热有限时,冰熔化和水合物离解是等温。在数百分钟的冰熔化过程中,估计冰面积逐渐缩小。类似地,当驱动力足够小(高生产压力)时,水合物的解离速率由热源控制,甚至变得恒定(高生产压力)。该研究的结果对于甲烷水合物剥削的速率控制很重要。 (c)2021 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Energy》 |2021年第1期|121030.1-121030.12|共12页
  • 作者单位

    Dalian Univ Technol Key Lab Ocean Energy Utilizat & Energy Conservat Minist Educ Dalian Peoples R China;

    Dalian Univ Technol Key Lab Ocean Energy Utilizat & Energy Conservat Minist Educ Dalian Peoples R China;

    Dalian Univ Technol Key Lab Ocean Energy Utilizat & Energy Conservat Minist Educ Dalian Peoples R China;

    Dalian Univ Technol Key Lab Ocean Energy Utilizat & Energy Conservat Minist Educ Dalian Peoples R China;

    Dalian Univ Technol Key Lab Ocean Energy Utilizat & Energy Conservat Minist Educ Dalian Peoples R China;

    Dalian Univ Technol Key Lab Ocean Energy Utilizat & Energy Conservat Minist Educ Dalian Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Methane hydrate; Ice; Isothermal; Heat transfer; Dissociation rate;

    机译:甲烷水合物;冰;等温;传热;解离率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号