首页> 外文期刊>International Journal of Heat and Fluid Flow >Large-eddy simulations of leading edge film cooling: Analysis of flow structures, effectiveness, and heat transfer coefficient
【24h】

Large-eddy simulations of leading edge film cooling: Analysis of flow structures, effectiveness, and heat transfer coefficient

机译:前沿薄膜冷却的大涡模拟:流动结构,效率和传热系数的分析

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical investigation is conducted to study leading edge film cooling with large eddy simulation (LES). The domain geometry is adopted from an experimental setup of [Ekkad, S.V., Han, J.C., Du, H., 1998. Detailed film cooling measurement on a cylindrical leading edge model: Effect of free-stream turbulence and coolant density. Journal of Turbomachinery 120, 799-807.] where turbine blade leading edge is represented by a semi-cylindrical blunt body with compound angle of injection. At blowing ratio of 0.4 and coolant to mainstream density ratio of unity, a laminar constant velocity and fully-turbulent coolant jet are studied. In both cases, the results show the existence of an asymmetric counter-rotating vortex pair in the immediate wake of the coolant jet. In addition to these primary structures, vortex tubes on the windward side of the jet are convected downstream over and to the aft- and fore-side of the counter-rotating vortex pair. All these structures play a role in the mixing of mainstream fluid with the coolant. The fully-turbulent coolant jet increases mixing with the mainstream in the outer shear layer but does not directly influence the flow dynamics in the turbulent boundary layer which forms within two coolant hole diameters of injection. As a result, the turbulent jet decreases adiabatic effectiveness but does not have a substantial effect on the heat transfer coefficient. The span-wise averaged adiabatic effectiveness agrees well with experiments for a turbulent coolant jet, without which the calculated effectiveness is over-predicted. On the other hand, the heat transfer coefficient which is only a function of near wall turbulence, shows good agreement with experiments for both coolant jet inlet conditions.
机译:进行了数值研究,以利用大涡模拟(LES)研究前沿薄膜冷却。晶畴的几何形状是从[Ekkad,S.V.,Han,J.C.,Du,H.,1998]的实验装置中采用的。在圆柱形前缘模型上进行的详细薄膜冷却测量:自由流湍流和冷却剂密度的影响。 Journal of Turbomachinery 120,799-807。],其中涡轮叶片前缘由具有复合喷射角的半圆柱形钝体表示。在0.4的吹气比和冷却剂与主流密度比为1的情况下,研究了层流恒速和完全湍流的冷却剂射流。在这两种情况下,结果都表明在冷却剂射流的立即唤醒中存在不对称的反向旋转涡流对。除这些主要结构外,位于射流迎风侧的涡流管在反向旋转涡流对的下游和前,后侧均向下游对流。所有这些结构在主流流体与冷却剂的混合中发挥了作用。完全湍流的冷却剂射流增加了与外部剪切层中主流的混合,但并没有直接影响在两个冷却剂注入直径内形成的湍流边界层中的流动动力学。结果,湍流降低了绝热效果,但是对传热系数没有实质影响。翼展方向的平均绝热效果与湍流冷却剂射流的实验非常吻合,否则,计算的效率将被过度预测。另一方面,仅是近壁湍流的函数的传热系数与两种冷却剂喷射入口条件下的实验均显示出良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号