首页> 外文期刊>International Journal of Heat and Fluid Flow >Effect of coolant-mainstream blowing ratio on leading edge film cooling flow and heat transfer - LES investigation
【24h】

Effect of coolant-mainstream blowing ratio on leading edge film cooling flow and heat transfer - LES investigation

机译:冷却剂-主流吹气比对前缘膜冷却流和传热的影响-LES调查

获取原文
获取原文并翻译 | 示例
       

摘要

Large Eddy Simulation (LES) is used to analyze and quantify the effects of the coolant-to-mainstream blowing ratio in leading edge film cooling. A cylindrical leading edge with a flat after-body represents the blade leading edge, where coolant is injected with a 30° compound angle. Three blowing ratios of 0.4, 0.8, and 1.2 are studied. Free-stream Reynolds number is 100,000 and coolant-to-mainstream density ratio is unity. At BR = 0.4, three types of coherent structures are identified which consist of a primary entrainment vortex at the leeward aft-side of the coolant hole, vortex tubes at the windward side of the coolant hole, and hairpin vortices typical of turbulent boundary layers produced by the turbulent interaction of the coolant and mainstream downstream of injection. At BR = 0.8 and 1.2, coherent vortex tubes are no longer discernable, whereas the primary vortex structure gains in strength. In all cases, the bulk of the mixing occurs by entrainment which takes place at the leeward aft-side of the coolant jet. This region is characterized by a low pressure core and the primary entrainment vortex. At BR = 0.4, the fore and aft vortex tubes also contribute to entrainment. Turbulent shear interaction between the jet and the mainstream, which increases substantially with blowing ratio, also contributes to the dilution of the coolant jet as evidenced by the large increase in turbulent kinetic energy in the region of interaction. As a result of the increased mixing between coolant jet and mainstream, adiabatic effectiveness decreases with an increase in blowing ratio. On the other hand, the increased turbulent intensities in the primary entrainment vortex result in an increase in the heat transfer coefficient.
机译:大涡模拟(LES)用于分析和量化前缘薄膜冷却中冷却剂与主流吹气比的影响。具有平坦后身的圆柱状前缘代表叶片前缘,在此处以30°复合角注入冷却剂。研究了0.4、0.8和1.2的三种吹风比。自由流雷诺数为100,000,冷却剂与主流的密度比为1。在BR = 0.4时,确定了三种类型的相干结构,包括在冷却剂孔的背风侧的初级夹带涡旋,在冷却剂孔的上风侧的涡流管以及产生的湍流边界层的典型发夹涡旋通过冷却剂和注入下游主流的湍流相互作用。在BR = 0.8和1.2时,不再可以看到相干的涡流管,而初级涡流结构的强度有所提高。在所有情况下,大部分混合都是通过夹带发生的,夹带发生在冷却剂射流的后风后侧。该区域的特征在于低压芯和初级夹带涡。在BR = 0.4时,前涡管和后涡管也有助于夹带。射流与主流之间的湍流剪切相互作用随着鼓吹比的增加而显着增加,这也有助于冷却剂射流的稀释,这一点由相互作用区域内湍动能的大幅增加证明。由于冷却剂射流和主流之间的混合增加,绝热效果随鼓风比的增加而降低。另一方面,初级夹带涡流中湍流强度的增加导致传热系数的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号