首页> 外文期刊>International Journal of Grid and Utility Computing >Detection of fatigue on gait using accelerometer data and supervised machine learning
【24h】

Detection of fatigue on gait using accelerometer data and supervised machine learning

机译:加速度计数据和监督机学习检测步态疲劳

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we aim to detect the fatigue based on accelerometer data from human gait using traditional classifiers from machine learning. First, we compare widely used machine learning classifiers to know which classifier can detect fatigue with the fewest errors. We observe that the best results were obtained with a Support Vector Machine (SVM) classifier. Later, we propose a new approach to solve the feature selection problem to know which features are more relevant to detect fatigue in healthy people based on their gait patterns. Finally, we used relevant gait features discovered in a previous step as input in classifiers used previously to know its impact on the classification process. Our results indicate that using only some gait features selected by our proposed feature selection method it is possible to improve fatigue detection based on data from human gait. We conclude that it is possible to distinguish between a normal gait person and a fatigued gait person with high accuracy.
机译:在本文中,我们的目的是使用传统分类器从机器学习中基于人体步态的加速度计数据来检测疲劳。首先,我们比较广泛使用的机器学习分类器来了解哪些分类器可以通过最少的错误来检测疲劳。我们观察到,使用支持向量机(SVM)分类器获得了最佳结果。后来,我们提出了一种解决特征选择问题的新方法,以了解哪些功能与基于它们的步态模式来检测健康人的疲劳。最后,我们使用了在前一步中发现的相关步态功能,因为先前用于了解其对分类过程的影响的分类器中的输入。我们的结果表明,仅使用我们所提出的特征选择方法选择的一些步态功能,可以根据人体步态的数据来提高疲劳检测。我们得出结论,可以区分正常的步态人和具有高精度的疲劳的静态人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号