首页> 外文期刊>International Journal of Grid and Utility Computing >Facial expression recognition using geometric features and modified hidden Markov model
【24h】

Facial expression recognition using geometric features and modified hidden Markov model

机译:利用几何特征和改进的隐马尔可夫模型进行面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a geometric feature-based descriptor for efficient Facial Expression Recognition (FER) that can be used for better human-computer interaction. Although lots of research has been focused on descriptor-based FER still different problems have to be solved regarding noise, recognition rate, time and error rates. The Japanese Female Facial Expression (JAFFE) data sets help to make FER more reliable and efficient as pixels are distributed uniformly. The proposed system introduces novel geometric features to extract important features from the images and layered Hidden Markov Model (HMM) as a classifier. The layered HMM is used to recognised seven facial expressions i.e., anger, disgust, fear, joy, sadness, surprise and neutral. The proposed framework is compared with existing systems where the proposed framework proves its superiority with the recognition rate of 84.7% with the others 85%. Our proposed framework is also tested in terms of recognition rates, processing time and error rates and found its best accuracy with the other existing systems.
机译:这项工作为有效的面部表情识别(FER)提出了一种基于几何特征的描述符,可用于更好的人机交互。尽管许多研究集中在基于描述符的FER上,但是仍然需要解决有关噪声,识别率,时间和错误率的不同问题。日本女性面部表情(JAFFE)数据集有助于提高FER的可靠性和效率,因为像素均匀分布。提出的系统引入了新颖的几何特征,以从图像中提取重要特征,并使用分层的隐马尔可夫模型(HMM)作为分类器。分层的HMM用于识别七个面部表情,即愤怒,厌恶,恐惧,喜悦,悲伤,惊奇和中立。将该框架与现有系统进行比较,现有系统以84.7%的识别率和其他85%的识别率证明了其优越性。我们提出的框架还经过了识别率,处理时间和错误率方面的测试,并发现其与其他现有系统的最佳准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号