首页> 外文期刊>International journal of granular computing, rough sets and intelligent systems >A multi-class boosting method for learning from imbalanced data
【24h】

A multi-class boosting method for learning from imbalanced data

机译:一种用于从不平衡数据中学习的多类提升方法

获取原文
获取原文并翻译 | 示例

摘要

The acquisition of face images is usually limited due to policy and economy considerations, and hence the number of training examples of each subject varies greatly. The problem of face recognition with imbalanced training data has drawn attention of researchers and it is desirable to understand in what circumstances imbalanced dataset affects the learning outcomes, and robust methods are needed to maximise the information embedded in the training dataset without relying much on user introduced bias. In this article, we study the effects of uneven number of training images for automatic face recognition and proposed a multi-class boosting method that suppresses the face recognition errors by training an ensemble with subsets of examples. By recovering the balance among classes in the subsets, our proposed multiBoost.imb method circumvents the class skewness and demonstrates improved performance. Experiments are conducted with four popular face datasets and two synthetic datasets. The results of our method exhibits superior performance in high imbalanced scenarios compared to AdaBoost.Ml, SAMME, RUSboost, SMOTEboost, SAMME with SMOTE sampling and SAMME with random undersampling. Another advantage that comes with ensemble training using subsets of examples is the significant gain in efficiency.
机译:由于政策和经济方面的考虑,人脸图像的获取通常受到限制,因此每个主题的训练示例数量差异很大。训练数据不平衡的面部识别问题引起了研究人员的关注,并且希望了解在什么情况下数据集不平衡会影响学习结果,并且需要鲁棒的方法来最大化嵌入在训练数据集中的信息,而无需过多依赖用户介绍偏压。在本文中,我们研究了训练图像数目不均对自动人脸识别的影响,并提出了一种多类增强方法,该方法通过训练带有示例子集的集合来抑制人脸识别错误。通过恢复子集中各类之间的平衡,我们提出的multiBoost.imb方法避免了类偏斜并展示了改进的性能。使用四个流行的面部数据集和两个合成数据集进行了实验。与AdaBoost.Ml,SAMME,RUSboost,SMOTEboost,带有SMOTE采样的SAMME和带有随机欠采样的SAMME相比,我们的方法的结果在高不平衡情况下表现出卓越的性能。使用示例子集进行集成训练的另一个优势是效率的显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号