首页> 外文期刊>International Journal of Engineering Science >Multiscale modeling framework to predict the effective stiffness of a crystalline-matrix nanocomposite
【24h】

Multiscale modeling framework to predict the effective stiffness of a crystalline-matrix nanocomposite

机译:多尺度建模框架预测结晶基质纳米复合材料的有效刚度

获取原文
获取原文并翻译 | 示例

摘要

Recently, multiscale modeling frameworks combining micromechanics-based homogenization methods and atomistic simulations have been widely applied to predict the effective stiffness of particulate-reinforced composites. Although most studies demonstrated that theoretical predictions incorporating interfacial damage are necessary to explain atomistic simulation results, the microscopic origin of the interfacial damage has not been systematically analyzed in terms of interatomic potential and interfacial structure. In this study, first, we conduct a series of particle simulations of two fictitious model crystalline composites with coherent interfaces: one has a two-dimensional triangular structure described by a bead-spring model and the other has a face-centered cubic structure described by the artificial Lennard-Jones potential. By comparing the simulation results with micromechanics theory, we obtain the interfacial bonding (damage) parameter used in the homogenization method in terms of parameters at the atomistic level. Second, we study the effects of the interfacial structures (coherent/incoherent) because of lattice or crystallographic orientation mismatch on the effective properties of composites. We obtain the elastic stiffness of Si(matrix)-Ge(nanoparticle) nanocomposites with different interfacial structures (coherent/incoherent structures) using atomistic simulations and observe that nanoparticle-size-dependency occurs only for the composite with incoherent interfaces. We propose a homogenization scheme considering the pre-stress (or residual stress) and interfacial imperfection, and explain the results from Si-Ge nanocomposite simulations. (C) 2021 Elsevier Ltd. All rights reserved.
机译:最近,多尺度建模框架结合了基于微机械的均质化方法和原子模拟的广泛应用于预测颗粒增强复合材料的有效刚度。虽然大多数研究表明,在解释原子仿真结果的情况下,必须在界面潜在和界面结构方面尚未系统地分析界面损伤的理论预测。在本研究中,首先,我们进行两种虚拟模型结晶复合材料的一系列颗粒模拟,其具有相干界面:一个具有由珠子弹簧模型描述的二维三角形结构,另一个具有由此描述的面为中心的立方结构。人工菩萨琼斯潜力。通过将模拟结果与微机械理论进行比较,我们在原子级参数方面获得了均质化方法中使用的界面键合(损伤)参数。其次,我们研究界面结构(相干/不连贯)的影响,因为晶格或结晶取向不匹配在复合材料的有效性质上。我们利用原子模拟获得具有不同界面结构(相干/不连贯的结构)的Si(基质)--ge(纳米粒子)纳米复合材料的弹性刚度,并观察到纳米粒子尺寸依赖性仅用于具有不连贯的界面的复合材料。我们提出了考虑到预应力(或残留应力)和界面缺陷的均质化方案,并解释Si-Ge纳米复合模拟的结果。 (c)2021 elestvier有限公司保留所有权利。

著录项

  • 来源
    《International Journal of Engineering Science》 |2021年第4期|103457.1-103457.16|共16页
  • 作者单位

    Korea Adv Inst Sci & Technol KAIST Dept Mech Engn 291 Daehak Ro Daejeon 34141 South Korea;

    Korea Adv Inst Sci & Technol KAIST Dept Mech Engn 291 Daehak Ro Daejeon 34141 South Korea;

    Korea Adv Inst Sci & Technol KAIST Dept Mech Engn 291 Daehak Ro Daejeon 34141 South Korea;

    Korea Adv Inst Sci & Technol KAIST Dept Mech Engn 291 Daehak Ro Daejeon 34141 South Korea;

    Korea Adv Inst Sci & Technol KAIST Dept Mech Engn 291 Daehak Ro Daejeon 34141 South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multiscale modeling; Homogenization; Atomistic simulation; SiGe nanocomposite;

    机译:多尺度造型;均质化;原子模拟;SiGe nanocomposite;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号