首页> 外文期刊>International journal of data mining, modelling and management >EFP-tree: an efficient FP-tree for incremental mining of frequent patterns
【24h】

EFP-tree: an efficient FP-tree for incremental mining of frequent patterns

机译:EFP树:频繁模式增量挖掘的高效FP树

获取原文
获取原文并翻译 | 示例

摘要

Frequent pattern mining from dynamic databases where there are many incremental updates is a significant research issue in data mining. After incremental updates, the validity of the frequent patterns is changed. A simple way to handle this state is rerunning mining algorithms from scratch which is very costly. To solve this problem, researchers have introduced incremental mining approach. In this article, an efficient FP-tree named EFP-tree is proposed for incremental mining of frequent patterns. For original database, it is constructed like FP-tree by using an auxiliary list without any reconstruction. Consistently, for incremental updates, EFP-tree is reconstructed once and therefore reduces the number of tree reconstructions, reconstructed branches and the search space. The experimental results show that using EFP-tree can reduce reconstructed branches and the runtime in both static and incremental mining and enhance the scalability compared to well-known tree structures CanTree, CP-tree, SPO-tree and GM-tree in both dense and sparse datasets.
机译:频繁模式从动态数据库中挖掘,其中有许多增量更新是数据挖掘中的重要研究问题。在增量更新之后,频繁模式的有效性已更改。处理这种状态的简单方法是从头开始重新运行的挖掘算法,这是非常昂贵的。为了解决这个问题,研究人员引入了增量采矿方法。在本文中,提出了一个名为EFP-Tree的有效FP-Tree,以增加频繁模式的增量挖掘。对于原始数据库,它是通过使用辅助列表的FP-Tree构造,无需重建。一致地,对于增量更新,EFP树​​被重建一次,因此减少了树重建,重建分支和搜索空间的数量。实验结果表明,使用EFP树可以减少静态和增量挖掘中的重建分支和运行时,并与众所周知的树结构Cantree,CP树,Spo树和GM树相比增强可伸缩性。稀疏数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号