首页> 外文期刊>International journal of data mining, modelling and management >Development of neural network-based models to predict mechanical properties of hot dip galvanised steel coils
【24h】

Development of neural network-based models to predict mechanical properties of hot dip galvanised steel coils

机译:基于神经网络的模型开发,以预测热浸镀锌钢卷的机械性能

获取原文
获取原文并翻译 | 示例

摘要

In the industrial arena, artificial neural networks are among the most significant techniques in system modelling because of their efficiency and simplicity. In this paper, we present an application of artificial neural networks, along with other techniques stemming from data mining, to model the yield strength, tensile strength, elongation, strain hardening coefficient and the Lankford's anisotropy coefficient of galvanised steel coils, according to the manufacturing process data. In particular, we propose the use of these models to improve the current control systems of hot-dip galvanising lines since an open loop control strategy must be adopted because the mechanical properties of hot-dip galvanising coils are not directly measurable.
机译:在工业领域,由于人工神经网络的效率和简便性,它们是系统建模中最重要的技术之一。在本文中,我们介绍了人工神经网络的应用以及数据挖掘产生的其他技术,根据制造情况对镀锌钢卷的屈服强度,拉伸强度,伸长率,应变硬化系数和兰克福德各向异性系数进行建模处理数据。特别是,我们建议使用这些模型来改进热镀锌线的当前控制系统,因为必须采用开环控制策略,因为不能直接测量热镀锌卷的机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号