首页> 外文期刊>International journal of data mining, modelling and management >On the mining of fuzzy association rule using multi-objective genetic algorithms
【24h】

On the mining of fuzzy association rule using multi-objective genetic algorithms

机译:基于多目标遗传算法的模糊关联规则挖掘

获取原文
获取原文并翻译 | 示例

摘要

The discovery of association rule acquire an imperative role in data mining since its inception, which tries to find correlation among the attributes in a database. Classical algorithms/procedures meant for Boolean data and they suffer from sharp boundary problem in handling quantitative data. Thereby fuzzy association rule (i.e., association rule based on fuzzy sets) with fuzzy minimum support and confidence is introduced as an alternative tool. Besides, rule length, comprehensibility, and interestingness are also potentially used as quality metrics. Additionally, in fuzzy association rule mining, determining number fuzzy sets, tuning membership functions and automatic design of fuzzy sets are prominent objectives. Hence fuzzy association rule mining problem can be viewed as a multi-objective optimisation problem. On the other side, multi-objective genetic algorithms are established and efficient techniques to uncover Pareto front. Therefore, to bridge these two fields of research many methods have been developed. In this paper, we present some of the popular state-of-art multi-objective fuzzy-genetic algorithms for mining association rules. In addition, their novelty, strengths, and weaknesses have been analysed properly with a comparative performance. The indicative future research direction and an extensive bibliography of this paper may be an attracting point for researchers from diversified domains to explore and exploit further.
机译:自从建立关联规则以来,它就一直在数据挖掘中起着至关重要的作用,它试图在数据库中寻找属性之间的关联。经典算法/过程适用于布尔数据,并且在处理定量数据时会遇到尖锐的边界问题。从而引入具有模糊最小支持和置信度的模糊关联规则(即,基于模糊集的关联规则)作为替代工具。此外,规则长度,可理解性和趣味性也有可能被用作质量指标。另外,在模糊关联规则挖掘中,确定数量模糊集,调整隶属函数和模糊集的自动设计是主要目标。因此,模糊关联规则挖掘问题可以看作是多目标优化问题。另一方面,建立了多目标遗传算法和有效的技术来发现帕累托前沿。因此,为桥接这两个研究领域,已经开发了许多方法。在本文中,我们提出了一些流行的最新的多目标模糊遗传算法,用于挖掘关联规则。此外,已经对它们的新颖性,优点和缺点进行了适当的分析,并具有比较性能。未来的指示性研究方向和广泛的参考书目可能是来自不同领域的研究人员进一步探索和利用的吸引点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号