首页> 外文期刊>International journal of data mining, modelling and management >Support vector machines for credit risk assessment with imbalanced datasets
【24h】

Support vector machines for credit risk assessment with imbalanced datasets

机译:支持向量机,用于不平衡数据集的信用风险评估

获取原文
获取原文并翻译 | 示例

摘要

Support vector machines (SVM) have a limited performance in credit scoring issues due to the imbalanced data sets in which the number of unpaid is lower than paid loans. In this work, we developed an SVM model with more kernels on a set of imbalanced data and suggested two data resampling alternatives: random over sampling (ROS) and synthetic minority oversampling technique (SMOTE). The aim of this work is to explore the relevance of re-sampling data with the SVM technique for an accurate credit risk prediction rate to the class imbalance constraint. The performance criteria chosen to evaluate the suggested technique were accuracy, sensitivity specificity, error type I, error type II, G-mean and the area under the receiver operating characteristic curve (AUC). Significant empirical results obtained from an experimental study of a real imbalanced database of loans granted by a Tunisian bank demonstrated the performance improvement thanks to sampling strategies in SVM, thus leading to a better prediction accuracy of the creditworthiness of borrowers.
机译:支持向量机(SVM)在信用评分问题上的性能有限,这是因为数据集不平衡,其中未偿还的数目少于已偿还的贷款。在这项工作中,我们开发了一个在一组不平衡数据上具有更多内核的SVM模型,并提出了两种数据重采样方法:随机过采样(ROS)和合成少数过采样技术(SMOTE)。这项工作的目的是探索使用SVM技术重新采样数据的相关性,从而获得准确的信用风险预测率与类别不平衡约束。选择用于评估建议技术的性能标准是准确性,灵敏度特异性,I型错误,II型错误,G均值以及接收器工作特性曲线(AUC)下的面积。通过对突尼斯银行发放的真实不平衡贷款数据库的实验研究获得的重要实证结果表明,由于支持向量机中的抽样策略,性能得到了改善,从而提高了借款人信誉度的预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号