首页> 外文期刊>International journal of data mining, modelling and management >Deciphering published articles on cyberterrorism: a latent Dirichlet allocation algorithm application
【24h】

Deciphering published articles on cyberterrorism: a latent Dirichlet allocation algorithm application

机译:解密有关网络恐怖主义的已发表文章:潜在的Dirichlet分配算法应用

获取原文
获取原文并翻译 | 示例

摘要

An emerging issue called cyberterrorism is a fatal problem causing a disturbance in the cyberspace. To unravel underlying issues about cyberterrorism, it is imperative to look into available documents found in the NATO's repository. Extraction of articles using web-mining technique and performed topic modelling on NLP. Moreover, this study employed latent Dirichlet allocation algorithm , an unsupervised machine learning to generate latent themes from the text corpus. An identified five underlying themes revealed based on the result. Finally, a profound understanding of cyberterrorism as a pragmatic menace of the cyberspace through a worldwide spread of black propaganda, recruitment, computer and network hacking, economic sabotage and others revealed. As a result, countries around the world, including NATO and its allies, had continuously improved its capabilities against cyberterrorism.
机译:一个新出现的问题,称为网络恐怖主义,是导致网络空间混乱的致命问题。为了弄清有关网络恐怖主义的根本问题,必须调查北约知识库中的可用文件。使用网络挖掘技术提取文章并在NLP上执行主题建模。此外,本研究采用潜在的Dirichlet分配算法,这是一种无监督的机器学习方法,可从文本语料库生成潜在主题。根据结果​​揭示了确定的五个基本主题。最后,通过在全球范围内传播黑人宣传,招募,计算机和网络黑客,破坏经济活动等,深刻理解了网络恐怖主义是网络空间的一种实用威胁。结果,包括北约及其盟友在内的世界各国不断提高了其打击网络恐怖主义的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号