首页> 外文期刊>International journal of computing science and mathematics >Local search-based dynamically adapted bat algorithm in image enhancement domain
【24h】

Local search-based dynamically adapted bat algorithm in image enhancement domain

机译:图像增强领域中基于局部搜索的动态自适应蝙蝠算法

获取原文
获取原文并翻译 | 示例

摘要

Bat algorithm (BA) is a new metaheuristic optimisation algorithm, which has already proved its supreme performance on many optimisation fields. However, it is possible to increase its efficiency when solving complex optimisation problems. This study concentrates on improving the efficiency of BA by incorporating different types of local search strategies and novel self-adaption strategies of parameters such as loudness, pulse rate and frequency. Comparative analysis of three different proposed local search strategies has been performed to find the best one. The proposed modified BAs with local search strategies are employed to solve five popular image enhancement models. Experimental results prove that self-adaption of parameters enhances the capability of standard BA. But the addition of efficient local search technique with self-adaption increases the effectiveness of the standard BA to a great extent.
机译:Bat算法(BA)是一种新的元启发式优化算法,已经在许多优化领域证明了其卓越的性能。但是,在解决复杂的优化问题时可以提高效率。这项研究集中于通过结合不同类型的局部搜索策略和新颖的参数(例如响度,脉搏频率和频率)自适应策略来提高BA的效率。已对三种不同的建议本地搜索策略进行了比较分析,以找到最佳策略。提出的带有局部搜索策略的改进的BA被用来解决五个流行的图像增强模型。实验结果证明,参数的自适应增强了标准BA的能力。但是,具有自适应功能的高效本地搜索技术的添加在很大程度上提高了标准BA的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号