首页> 外文期刊>International journal of computing science and mathematics >Real-time online action detection and segmentation using improved efficient linear search
【24h】

Real-time online action detection and segmentation using improved efficient linear search

机译:使用改进的高效线性搜索进行实时在线动作检测和细分

获取原文
获取原文并翻译 | 示例

摘要

More and more attention has been paid to linear-time online action detection and video segmentation, due to wide application in the fields of human-computer interaction, games and surveillance. In this paper we propose a new descriptor which can be adopted for action recognition, online action detection and segmentation. In addition, we propose the improved efficient linear search (improved ELS) whose scheme is modified to solve the problem of the existence of many action classes' maximum subarray sums exceeding their thresholds. Then we evaluated our approach on MSRC-12 and MSR-Action3D datasets. The results show that our descriptor achieves the state-of-the-art results on action recognition and the performance of the improved ELS is much higher than that of the ELS.
机译:由于在人机交互,游戏和监视领域的广泛应用,线性时间在线动作检测和视频分割越来越受到关注。在本文中,我们提出了一种新的描述符,可用于动作识别,在线动作检测和分段。此外,我们提出了一种改进的有效线性搜索(改进的ELS),其方案经过修改以解决许多动作类的最大子数组总和超过其阈值的问题。然后,我们在MSRC-12和MSR-Action3D数据集上评估了我们的方法。结果表明,我们的描述符在动作识别方面达到了最新水平,改进的ELS的性能远高于ELS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号